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RELEVANCE OF THE PROBLEM 

In this article, as in [1-8], the theoretical 
provisions of the existing methods of hump yards [9-

17] will be analytically evaluated regarding the 

possibility of rolling the wheels of the car wheelsets in 
the braking zones in the areas of braking positions. 

Mathematical expressions and calculation examples 
will prove that the rolling friction moment arises due to 

the impact of the rail on the wheel and / or the 

reaction of the non-ideal connection on the wheel. 
 

PURPOSE OF THIS ARTICLE 
Based on the principle of classical provisions of 

theoretical mechanics on the theory of sliding and 

rolling friction [18 - 27], try to explain in detail the 
reason for the rolling of wheels with sliding, if such 

movement is possible, and the pure sliding of the 
wheel along the rail threads in the zones of braking of 

the car in the areas of braking positions. 
 

TASK FORMULATION 

Based on the provisions of the geometric statics 
of the wheel rolling of theoretical mechanics, to 

substantiate the possibility and / or impossibility of the 
car moving along the slope of the marshalling yard, in 

contrast to [6], with the rolling of the wheel with 

simultaneous sliding and pure sliding of the wheel 
relative to the rail. 

 
RESEARCH RESULTS 

VII.3. Reasoning about the analytical statics of 
wheel rolling without slipping, with slipping in the 
absence of friction force and the possibility of rolling 
wheels with simultaneous sliding on high-speed 
sections of the track profile  

We give a mathematical proof of the 
impossibility of rolling wheels with slip in the absence 

of friction (with an ideal connection) and the possibility 

of rolling wheels with slip on high-speed sections of 
the track profile, as non-ideal connections, and 

slipping of wheel sets on sections of brake positions 

(see pages 257 - 263 in [39]). 
Then, comparing formula (24) with formula 

(15), we note that they contain a multiplier in 
parentheses that is identical in appearance and in 

physical meaning. Otherwise, we obtained a formula 

for determining the speed of movement when rolling 
the wheelsets of a car without slipping on a non-ideal 

(with friction) inclined plane (see p. 409 in [38] and p. 
259 in [39]).  

Assumptions accepted. Let us assume that the 

gravity car G along the rail thread (as an inclined 
plane with a non-ideal surface) makes a plane-parallel 

motion. We assume that during the translational 
motion of the car, its wheelsets roll (and/or roll) 

without slipping under the action of the projection of 
gravity G on the axis Cвx (i.e. Gx = Gcosψ) along the 

rail threads so that the speed of its center vC is not 

equal to zero , i.e. vC ≠ 0 (Pic. 1). 
 

 
Pic. 1. Drawing for the movement of the car 

along the rail threads 

 
On fig. 1 shows: G - gravity force of the wagon 

with cargo; Ox’y’z’ - fixed coordinate systems, the 
origin of which is located on the conditional top of the 
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hill; A and B are fixed points between which the car 
can move; Cвxyz – moving coordinate systems located 

in the center of mass of the car Cv; P - point of 

contact and / or contact of the wheelset with the rail; 
C - center of mass of wheelsets; Skb - the center of 

the wheelbase of the car; v - is the portable 
translational speed of the car; vC - is the speed of the 

center of inertia C of the wheel sets, and vC = v; τ - τ 
- common tangent to the trajectory of the wheel, as a 

circle, and the rail; ψ - is the angle of inclination of the 

track profile. 
We accept that the center of inertia of two 

wheelsets C is located in the center of the wheelbase 
of the Skb car. We assume that the origin of the 

moving coordinate axes Cvxz are located at the center 

of inertia, which coincides with the center of mass of 
the car Cv. We neglect the wobble and lateral offset of 

the car wheelsets around the Cz axis and in the Cvxy 
plane, respectively. Let us consider the movement of 

wheelsets with a radius r in the plane Cwxz, as well as 
the influence on the movement of the car of any kind 

of resistance [5, 6, 27] (basic ωo, air and wind ωst = 

wst, from arrows ωstr, from curves ωcr, from snow 
frost ωsn) Fс. We assume that the car moves along 

the slope of the hill under the influence of the 
projection of the force of gravity Gx on the axis Cvx, 

although, if necessary, the projection of the force of 

the tail and / or head wind of small magnitude Fv.x on 
the axis Cvx is not excluded [5, 6, 27]. 

Task formulation. It is required to find the 
acceleration of the center of inertia C of the wheel sets 

aC (and, consequently, of the car a during its 
translational motion, and a = aC) and write down the 

condition under which it is possible for the wheelsets 

of the car to roll without sliding, taking into account 
the rolling friction Ftr.k of the wheelsets relative to the 

rail threads, as well as to determine the conditions 
under which the wheelsets begin to simultaneously roll 

and slide along the track profile, as an imperfect 

connection. 
Construction of a mathematical model of the 

plane-parallel movement of the wheel sets of the car, 
as solid bodies (problem solution). In this article, we 

will show the solution of an engineering problem by 

compiling differential equations for the plane-parallel 
movement of car wheelsets, as solid bodies, and 

bringing the forces of inertia to the main vector and 
the main moment; 

VII.3.1. The solution of the problem. Applying 
the principle of release from geometric statics 

constraints (see p. 340 in [42] and/or p. 394 in [44]), 

we construct a design scheme for the movement of a 
car along a non-ideal inclined plane, and then, 

discarding non-ideal bonds (rail threads), we replace 
their influence with normal N1, N2 and tangents Fτ1 

and Fτ2 components of the reaction of bonds (rail 
threads) R1 and R2 (Pic. 2). 

 
Pic. 2. Calculation scheme of the movement of 

the car along the track profile 
 

On the pic. 2, the same designations are 

adopted as in Pic. 1, except for: N1, N2 and Fτ1, Fτ2 
are the normal and tangential components of the 

reaction of the bonds R1 and R2, and 

1тр11 ),( RFN   and 2тр22 ),( RFN   

conditionally applied to the points Cb, coinciding with 
the centers of the wheelbase (KB) of the wagon lkb. 

Basic assumptions. Let us assume that the 
normal N and tangential Fτ components of the 

constraint reaction R are conditionally applied in the 

center of the wheelbase of the Skb car (see Pic. 2). In 
this case, the normal components of the N1 and N2 

bond reactions are equal, respectively, 
 

N1 = N2 = Gz/2 = Gcosψ/2, 
and the tangent components Fτ1 and Fτ2, according to 

the Coulomb law [35, 36, 38 – 41]: 

Fτ1 = Fтр1 ≤ fN1 and Fτ2 = Fтр2 ≤ fN2 
taking into account the fact that 

f = 0,125 – coefficient of sliding friction in motion 
between the rolling circles of wheelsets and the 

surfaces of rail threads (according to [59]: f = 0.25, 

and according to p. 53 in [38?] and §75 in [45 Targ]: f 
= 0.15 ... 0.25). 

Otherwise, the normal component of the bond 
reaction is N = 2N1 = Gcosψ, and the tangential 

components are Fτ = 2Ftr = 2fN = fGcosψ. 
Moreover, the friction force Fτ = Ftr for carriage 

wheels is directed opposite to the speed vC of the 

center of inertia of the wheels C (moreover, vC ≠ 0) 
and the friction force Ftr is applied to the wheels at 

points P (see Fig. 1). It should be noted that when 
solving the problem of establishing wheel rolling 

without slipping, it is impossible to determine the 

friction force by the formula Ftr = fGcosψ, since this 
takes place in the case of slipping of the wheel contact 

point P along the rail threads. When the wheel is 
rolling without sliding, the friction force Ftr can be 

much less than fGcosψ, i.e. Ftr ≤ fGcosψ. 
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We assume that the wheelsets of the car, when 
rolling without sliding, perform a plane-parallel motion 

along a non-ideal inclined plane (see Pic. 2). 

Taking into account that the angular velocity ω 
= ω from the moving wheelset characterizes its 

relative motion, we can assume that around the axis 
Cy1 (and/or around the point C) the car wheelset 

rotates with the angle of rotation φ (see Pic. 2 12 in [ 
36 TrNTU №11 2018]). 

It is well known [36, 42, 44] that the angular 

velocity ω of a wheelset in rotational motion: 

)(t=  . 

We will keep in mind that during the movement 

of the wheelset, with which the system of movable 
axles Сx1y1z1 is rigidly connected, the distance 

between the axles of the wheelset and rail threads 
(see Pic. 2 12 in [36 TrNTU No. 11 2018]), with which, 

in turn, turn, the system of fixed axes Ox'y'z' is rigidly 
connected, remains constant (i.e. r = const). 

Solution methods. The movement of the 

wheelset of a car, according to the kinematics of a 
rigid body, can be decomposed into two movements 

(see pages 301 and 302 in [36 Voronkov]), as the 
principle of independence of the translational 

movement of the body and its rotation in the case of 

plane-parallel movement: 
firstly, to a portable translational movement 

together with translationally moving coordinate axes 
Cx1, the beginning of which is located in the center of 

inertia C of the wheelset; 
secondly, on the relative rotational movement 

around the axis Сy1 passing through the center of 

inertia С. 
In this regard, we write the differential 

equations of the plane-parallel motion of the wheel 
sets of the car, as solid bodies, in the form [36]: 






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(1) 

where, 
M – mass of wheel pairs of the wagon; 


=

n

k

e

kxF
1

 – the sum of the projection of external 

forces 
e

kF  on the moving axle Сx1, in which k varies 

from 1 to n; 


=

n

k

e

kzF
1

 – the sum of the projection of external 

forces on the movable axis Сz1;  

JC – the moment of inertia of the wheelset relative to 

the center of inertia C;  

)(
1


=

n

k

e

kC Fm  – sum of moments of external forces 

e

kF  relative to the axis Сy1, passing through the 

center of inertia C of the wheelset, in which k varies 
from 1 to n. 

The first two equations in (1), according to the 

theorem on the movement of the center of inertia of a 
system of material points, written in projections on the 

coordinate axes Сx1 and Сz1 [42, 44, 47], describe the 
translational translational motion of wheel sets 

together with the translationally moving coordinate 
axes Сx1y1z1, the beginning which is located in the 

center of inertia C of the wheelset (see Pic. 2 12 in [36 

TrNTU No. 11 2018]). 
The third equation of the system (44), as a 

mathematical notation of the theorem on the change 
in the main moment of the momentum of the system 

of material points in relative motion with respect to the 

center of inertia C in relation to the case of rotation of 
a rigid body around the movable axis Сy1, which 

moves forward [42, 44, 45] , describes the relative 
rotational motion of the system of wheelsets with an 

angular velocity ω = ωot around the movable axis Сy1 
passing through the center of inertia C of the wheelset 

(see Pic. 2 12 in [36 TrNTU No. 11 2018]). 

In this case, we will take into account the 
possible local deformation of the wheels of the wheel 

sets of the car and the rolling surface of the rail 
threads. In this case, the contact between the wheel 

and the rail occurs not at one point P (see Pic. 12), 

but along a disproportionately small arc PA (see p. 
158 [47]) (Pic. 3). 
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Pic. 3. Scheme of rolling wheelsets with 

sliding relative to 
rail threads, taking into account the moment of 

rolling friction 
 

Designation in pic. 3 is the same as in Pic. 2 12 

in [36 TrNTU No. 11 2018], except that in it: A and P 
are the points of application of the normal N and 

tangent Fτ component of the reaction of bonds (rail 
threads) R; Mk – rolling friction moment; fk is the 

coefficient of rolling resistance and/or rolling friction of 

wheelsets against rails (usually for steel wheels and 
steel rails fk = 0.005∙10-3 m (see p. 203 in [40], p. 71 

in [45]). 
In this case, the tangential component Fτ of the 

reaction of the coupling (of a disproportionately small 

arc PA) R is the friction force Ftr and it is applied at 
point P of the MCV of the wheel, and the normal 

component N will be applied at point A, displaced 
relative to the center of inertia of the wheel C of the 

wheelsets at the length of the arc PA in side of the 
movement. 

Therefore, it can be seen that the part of the 

gravity force of the car with the load Gcosψ, applied 
to the center of mass C of the wheel, and the normal 

component N of the coupling reaction R, forms a pair 
of forces, called the moment of the couple of forces 

and / or the rolling friction moment Mk (see § 2.4 .2 in 

[47]). The shoulder of this moment is called the rolling 
resistance coefficient (see p. 212 in [35]) and/or the 

rolling friction coefficient fk, which has the dimension 
of length (m) [40, 45]. 

Therefore, when compiling the differential 
equation for the plane motion of wheel sets, we will 

take into account the moment of rolling friction Mk in 

the number of external force effects on the wheel. 
Proceeding from this, we rewrite the differential 

equations of the plane motion of wheelsets (i.e., 
translational motion with simultaneous rotational 

motion of the wheels around its own axis) of the car in 

the form (see pp. 264 – 266 in [35]): 


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(2) 
where,  

Fтр ≤ fGcosψ – the friction force, which, when solving 
the problem of establishing the rolling of a wheel 

without slipping, remains an unknown value; 

f – conditional coefficient of sliding friction of the 
contacting surfaces of wheelsets and rail threads, 

taking into account rolling friction in bearings (see 
formula (13.9) in [46 Komarov]): 

f
r

r

GG

G
f п

01кп01

0101
пр

)cos()(

)cos(

+


= ;                               

(3) 

where, 
N = Gcosψ – the normal component of the reaction 

of bonds (rail threads); 

nк = 8 – the number of wheels in the wagon bogies; 
JC = G∙iC2/g or JC = G∙r2/2g – the moment of inertia 

of the wheels of one wheel pair relative to the center 
of inertia C, provided that the wheel is considered to 

be a solid homogeneous disk with a radius r [46, 47], 

taking into account the fact that it contains: 
iC2 = r2/2 – the square of the radius of inertia of the 

wheel relative to its geometric axis Сy1 (see Pic. 2); 

Mк = Fтрfк = fGcosψfк – the moment of the rolling 

friction pair of one wheel pair [47] relative to the point 

A of the application of the normal component N of the 
reaction of ties (rail threads) (see Fig. 1); 

fк – coefficient of rolling friction of the wheelset on the 
rails, m (usually for hardened steel on hardened steel 

fк = 0.001 m (see p. 42 [54 Ivanov P.S.])), equivalent 
to the arm of the rolling friction pair (see Pic. 2). 

In the third equation of system (45), the 

negative sign of the rolling friction moment of the 
wheels Mtr.k corresponds to the opposite direction of 

the angle of rotation φ of the movable axis Cx1 
relative to the other movable axis Cx2, parallel to the 

axis Ox' of the fixed coordinate system Ox'y'z' and 

rigidly connected to the conditional top of the hill 
(UVG) (see Pic. 3) in accordance with the rules of 

rotation of the unit radius vector of mathematics (see 
p. 179 [50 Bronshtein]). 

Taking into account the accepted notation, we 
give the system of differential equations (45) the 

following form (see pp. 563 − 566 [54]): 
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(4) 
Let's say that in system (4), due to the fact that 

the objectives of the study are to determine the 
condition of wheel rolling without slipping, then the 

friction force Ftr is the sought value due to the fact 

that for a non-ideal connection it is Ftr ≠ 0. 
Analyzing the system of equations (4), we note 

that, according to the first equation, in the absence of 
a sliding friction force in motion (i.e. Ftr = 0), which 

corresponds to the case of an ideal connection, i.e. 

when the wheels and rail threads are considered as 
absolute rigid bodies, it is possible for the wheel to 

slide along the rail, since at t = 0: 0н vvxC == . 

During the time t seconds, sliding on an 

absolutely smooth plane (ideal connection), the center 
of inertia of the wheel C (see Fig. 3) would go the 

way: 

,gsin 2

н ttvxC +=                                           

(5) 

where, 
t – current time. 

Here is the acceleration of the center of inertia 
of the wheel C for a perfect connection: 

.constsing ==Ca  

In this case, i.e. at Ftr = 0, the rolling of the 
wheel along the rail is impossible, since from the third 

equation of system (5) at t = 0: 

φ = 0 and 0= , 

i.e. the wheel does not rotate (ω = 0). 

Since the entire time of movement of the wheels 

zC = – r (as the distance between the movable axle 
Cx2 and the fixed axle Ox’) is constant, then, 

0=Cz  therefore, from the second equation of 

system (47) we find: N = Gcosψ. 
Since in system (5) the friction force Fтр ≠ 0 and 

the wheelsets of the car roll without slipping and the 

speed of their center of mass rvC =  (see formula 

(41) in paragraph VII.2.1) is parallel to the Сx2 axis 
(see Pic. 3), then we can write down the condition of 
rolling wheels without slipping (pure rolling of wheels) 

and in this form: 

rxC =  .                                                     

(6) 

Taking the time derivative of Cx , we have:  

rxC =  ,                                                   

(7) 

which corresponds to the formula for the tangent 
component aτ of linear acceleration as the point moves 

along the curve: 

,ra =                                                 

(8) 
where,  

ε =   – angular acceleration [36].  

From formula (7) we find the angular 
acceleration of the wheel: 

.
r

xC


 =                                                   

(9) 
Further, to determine the equation of motion of 

the center of mass С of wheelsets, it is necessary to 

integrate the first equation of system (1), where on 
the right side there is a sliding friction force in the 

movement Ftr of wheelsets on the rolling surface of 
rail threads. 

As noted earlier, when solving the problem of 
establishing a wheel rolling without sliding, it is 

impossible to determine the friction force by the 

formula Ftr = fGcosψ, since this takes place in the 
case of sliding of the wheel contact point P along the 

rail threads. When the wheel is rolling without sliding, 
the friction force Ftr can be much less than fGcosψ, 

i.e. Ftr ≤ fGcosψ. 

Therefore, to exclude the friction force Ftr from 
it, we will keep in mind that such a force, according to 

the rules of the kinematics of the motion of a rigid 
body, is always applied to the wheels at the points P 

of their contact with the rail threads (see Pic. 2 12 in 

[36 TrNTU No. 11 2018 ]), coinciding with the MCC Pv, 
where the velocity vPv = 0, and move along with them 

[36, 41]. Therefore, the speed of the center of mass C 
of the wheel, according to the formula: vC = rω. 

Taking into account formula (51a), we represent 
the third equation of system (4) as: 

),(
g

кктр

2

к fnrF
r

x
i

G
n C

C −=


  

from here, after elementary transformations, we 
obtain a formula for determining the friction force 

when rolling without slipping, 
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(10) 
Substituting equality (9) into the first equation 

of system (4), we will have: 
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From here, after elementary mathematical 
calculations, we obtain a generalized mathematical 

expression for determining the linear acceleration of 

the center of mass C of the wheels of the car and / or 
the center of mass of the car Cv (see Pic. 2) in the 

final form: 

.
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
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(11) 

If we take into account that iC2 = r2/2 is the 

square of the radius of gyration of the wheels, as a 
solid homogeneous disk with radius r [36, 46, 47], and 

nk = 8 is the number of wheels in the car bogies, the 
last formula can be given the form: 

.

81
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(12) 

In a particular case, when the rolling friction 
moment of the wheels Mtr = 0 is not taken into 

account, i.e. at fк = 0 (see Pic. 3), the last 
mathematical expression will take the form: 
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
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or, considering that iC2 = r2/2,  

.

2
1

sing

кn
xC

+


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(13) 

Keeping in mind that CC ax =  is the 

acceleration of the center of mass C of the wheels, 

provided that the movement of this center is given in 
the form: xC = at2/2, and nk = 8 is the number of 

wheels in the car bogies, we will give the last 

expression the form of a formula: 

,sing25,0 =Ca                                                

(14) 

or, considering that for small angles sinψ ≈ ψ = i: 

.g25,0 iaC =                                                     

(15) 
From here it becomes obvious that the 

acceleration of the center of mass C of the wheelsets 

when the wheels roll without slipping relative to the 
rails (non-ideal connection) is 4 times less than the 

projections of linear acceleration on an ideal inclined 
plane (see formulas (6) and (7) in paragraphs. I in [36 

BTI No. 9 2018]). 

In another particular case, when instead of 
wheels rolling without slipping, there is a pure sliding 

of wheel sets relative to the rail threads (if they are 
taken as ideal connections), when the moment of 

inertia of the rotating parts JC is not taken into 

account (i.e. JC = 0, and, therefore, iC2 = 0), the 
mathematical expression (13) will take the form: 

,sing == CC ax                                            

(16) 

or, in the conventional notation and customary 
understanding, 

,giaC =                                                      

(17) 

taking into account the fact that in it i is the slope of 
the track profile, ‰. 

In this case, formulas (8) and (9) coincide with 
the projection of linear acceleration onto an ideal 

inclined plane (see formulas (6) and (7) in paragraph I 

in [36 BTI No. 9 2018]). 
Formulas (15) and (17), obtained for particular 

cases, confirm the correctness of the derivation of the 
generalized mathematical expression for the 

acceleration of the center of mass C of the car 

wheelsets (53) (i.e. CC ax = ). 

In turn, this confirms the undeniably gross 

fallacy and / or inadmissibility of using the formulas 
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derived for an ideal (where the bonds are non-ideal 
(non-smooth and/or with friction)) formulas derived 

for an ideal (smooth and/or friction-free) bond (see 

formulas (6) and (7) in item I in [36 BTI No. 9 2018] ). 
Otherwise, this confirms the incompatibility of 

formula (8) and (12) and/or (1). 
The generalized mathematical expression for the 

acceleration of the center of mass С of the wheel sets 
of the car (53) allows, on the basis of formula (9), to 

determine the friction force in the movement Ftr of the 

wheel sets on the rolling surface of the rail threads 
when the wheel rolls without slipping in the form: 
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(18) 

Such a friction force must act on the wheel of 
the wheel pairs of the car in order for it to roll without 

sliding along the rail threads (see p. 330 in [46 Targ]). 

It was previously indicated that the friction force Ftr ≤ 
fN = fGcosψ (see non-strict inequality (34)). From 

this it is clear that by substituting expression (9) into 
the last inequality, we can find the condition for 

determining the friction coefficient in the form: 

.
ψcos

тр

G

F
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If the latter condition is met, pure rolling will 

occur. 

If condition (19) is not met, then the friction 
force Ftr cannot take the value determined by formula 

(18). In this case, the wheel will roll with slippage 
relative to the rail threads. 

It is well known (see p. 330 in [46 Targ]) that in 

this case vC and ω are not connected rvC = , 

since in this case the point of contact P of the wheel 

with the rail threads is not the instantaneous center of 
velocities (MCV). At the same time, the value of Ftr has 

a limiting value, i.e. Ftr = fN = fGcosψ. Therefore, 
the first and third equations of system (4) after simple 

transformations will take the form (see formula (20)): 

( );ψcosψsing faС −=                                          

(20) 
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(21) 

The center of mass C of the wheel in this case 
will move with acceleration aC, and the wheel itself will 

rotate with angular acceleration. In this case, equality 

(7) and/or (8) will also be satisfied in the form 

rxC =   or raC = . 

The condition of wheel rolling without sliding 
(see formulas (43) and (49)) is satisfied only when, 

according to the Coulomb law [36, 37, 45], the friction 
force Fтр ≤ fN = fGcosψ (see non-strict inequality 

(33)), appearing at the point of contact P of its contact 
with the rail (see Pic. 2), coinciding with the MCS Pv, 

where the speed vPv = 0, moves with it [36, 42, 44]: 
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or, after simple transformations, 
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(22) 
Note that condition (22) roughly characterizes 

the material and the physical state of the rolling 
surfaces of wheels and rails. 

If condition (22) is satisfied, then this means 

that in the process of rolling the car down the slope of 
the hill, deformation of the contacting surfaces of the 

wheels and rail threads occurs, and for this reason, a 
pair of forces (GzC, N) arises (see Pic. 1 in [36 TrNTU 

No. 11 2018]).) and/or the moment of this pair of 

forces Mk (see Pic. 3, which prevents the wheels from 
rolling without slipping. 

In a particular case, when the rolling friction 
moment of the wheels Mtr = 0 is not taken into 

account, i.e. when fk = 0, from the last formula, you 
can get the condition: 
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(23) 

With regard to the wheels of the bogies of a 
four-axle car (nk = 8), we rewrite (23): 

f25,1tg  .                                                

(24) 
Subject to non-strict inequality (21) and/or (22) 

and/or (23), the wheel will roll along the rail without 
slipping, i.e. there will be a pure sliding of the wheel 

along the rail (see p. 534 in [36], p. 330 in [45]). 

Subject to non-strict inequality (21) and/or (22) 
and/or (23), the wheel will roll along the rail without 

slipping, i.e. there will be a pure sliding of the wheel 
along the rail (see p. 534 in [36], p. 330 in [45 Targ]). 

 The condition of wheel rolling without sliding in 
the form (61) can also be represented in the following 

form (see p. 330 in [45 Targ]): 
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(25) 
If the path profile angle ψ does not satisfy the 

nonstrict inequality (24), then the wheel will roll, 
sliding along the rail (see p. 265 in [35], p. 409 in 

[38]). In this case, there is no geometric relationship 

between the acceleration CC ax =  of the center of 

inertia of the wheels C and its angular acceleration 

 = εC. These two accelerations are obtained by 

substituting the condition Ftr ≤ fN = fGcosψ (see 

non-strict inequality (34)) into the first and last 
equations of system (4). 

So, for example, from the first and second 
equations of system (2) we obtain the conditions 

under which rolling occurs with simultaneous sliding, 

which follow from the first and third equations of 
system (4): 

CC ax  ,                                                      

(26) 

where,  
aC – acceleration of the motion of a body along a non-

ideal inclined plane (see the formula (20)): 
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(27) 
As can be seen, the center of inertia of the 

wheels C in this case will move with acceleration aC, 
and the wheels of the wheelsets will rotate with 

angular accelerations  = ε, determined by relations 

(21) and (23). 
Let us rewrite non-strict inequalities (64) and 

(65) as equalities: 
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or 

CC ax =   and  ,=                                              

(28) 

where, 
aC – acceleration of the center of inertia C of the 

wheel, determined by the first formula (28);  

=  – angular acceleration of the center of inertia 

C of the wheel: 
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(29) 
Integrating each of equations (28), we obtain: 

tax CC =   and  .t==                                   

(30) 

The difference between Cx  and rr =  

(see formula (49)) is the sliding speed of the point of 

contact P of the wheel with the rail: 

rCCCx vxrxv −=−=                                                  

(31) 
where,  

.rrvrC ==                                                 

(32) 

Differentiating equation (30) taking into account 
formula (17), after elementary mathematical 

calculations, we obtain: 

) tg (tg(cosg 0−=−= rxv Cx
 ,                      

(33) 

where, 
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Hence, it is clear that, under the condition ψ > 
ψ0, the value in the brackets of formula (34) is 

positive and the sliding speed will increase as the 
wheel moves along the slope of the hill profile (see p. 

264 in [43]). 
In a particular case, when the rolling friction 

moment of the wheels Mtr = 0 is not taken into 

account, i.e. at fk = 0, from formula (43) either the 
following condition is obtained: 
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(36) 

As applied to the wheels of the bogies of a four-
axle car (nk = 8), we rewrite inequalities (35) and 

(36): 

,cosg
25,0
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(37) 

.cosg25,0  fxC
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(38) 

 
Calculation example VII.2. For example, let's 

study the movement of the car on the section of the 

third (C3) switch zone (SZ) of the downhill part of the 
hill. The initial data of the calculation example are the 

same as in example VII.1: G = 908 is the gravity force 
of a wagon with a load, kN; f = 0.175 is the sliding 

friction coefficient of metal on metal (according to p. 

65 in [45]: f = 0.15 ... 0.25); fk = 0.001 – coefficient 
of rolling friction of hardened steel on hardened steel 

(see p. 42 in [54]); r = 0.475 is the radius along the 
wheel rolling circle, m [56, 59]; nk = 8 - the number of 

wheels of the wheel pair of the car, pcs; ψ6с3 = 0.002 
– slope angle of the NW slide, rad.; l6c3 = 24.0 is the 

length of the NW section of the slide, m, the time of 

movement of the car on the investigated section of the 
slide: t6c3 = 7.934 s. 

Calculation results [53]. 1) Calculate the value 
of the square of the radius of inertia of the wheel 

relative to its geometric axis Сy1 (see Fig. 2) (iC)2, m2: 

(iC)2 = r2/2 = 0,4752/2 = 0,113. 

2) Let us calculate the linear acceleration 

CC ax =  of the center of mass С of the car wheels 

and/or the center of mass of the car Cv (see Pic. 2) 
using formula (53), m/s2: 
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or considering that CC ax = , aC ≈ 0,004 m/s2.  

In the particular case when JC = 0 (and, 
therefore, iC2 = 0), the value aCnd., calculated by 

formula (15) and/or (1), describing the movement of 
the car along an ideal inclined plane (coupling), m/s2: 

3с6.ид sing =Ca  = 9,81∙0,002 ≈ 0,02, 

which is 5 times higher than the value aC ≈ 0.004 

m/s2 - for a non-ideal inclined plane (bond). 
This means that if the car moves along an ideal 

inclined plane (coupling) (see Pic. 3), then there is a 
pure sliding of the wheelsets relative to the rails, which 

always corresponds to the condition (see Table 1 in 

[3]): 

CC aa .ид  and/or asing . 

Namely, this is what we especially draw the 

attention of the authors of the article [3], who 
stubbornly defend the correctness of the application of 

the formula for the velocity of free fall of bodies, 

taking into account the inertia of the rotating parts 

hv g2 =  (see formula (1) in [2]), derived for 

ideal constraints, for the case of non-ideal constraints , 

i.e. between the wheels of the car and rail threads. 
3) Calculate the linear acceleration a6c3 = aС of 

the center of mass С of the wheel according to non-

strict inequality (64) (see the first formula (67)), m/s2: 

)cossing( −= faC  = 9.81(0,002 – 

0,175∙1) ≈ – 1,7 = |1,7|.  

Note that the negative sign of the acceleration 

of the center of mass C of the wheel means that the 
wheel, and, consequently, the car, moves uniformly, 

which is not typical for the switch zone when taking 
into account the effect of a tailwind of small 

magnitude (Fвx ≈ 3.2 kN). 

Comparing the results of calculating the 
acceleration of the center of mass C of the wheels, we 
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make sure that the non-strict inequality (65) in the 

form of CC ax   is observed, since 0.004 ≥ |1.7|. 

Therefore, in accordance with condition (64), 
when the car moves along the slope of the marshalling 

yard, it is as if the wheels are rolling with simultaneous 
sliding. 

4) Let's calculate the parameters characterizing 

the material and the physical state of the rolling 
surfaces of wheels and rails, according to the condition 

(61): 
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or, since tgψ6c3 = 0.002, then 0.002 ≤ 0.232, i.e. the 

nonstrict inequality (61) is satisfied. In this case, the 
motion will be uniformly slowed down (see p. 428 in 

[36]). 
Therefore, when the car moves along the slope 

of the marshalling yard, given the initial data of the 

calculation example according to condition (61), the 
wheel will roll along the rail without slipping, i.e. there 

will be a pure rolling of the wheel on the rail (see p. 
534 in [36], p. 330 in [45]). 

When a wheel rolls along a rail, according to 

formulas (43) and/or (49) and (51), the angular 
velocity ω6c3 and angular acceleration ε6c3 are 

respectively equal to: 
ω6c3 = v6c3/r = 3,154/0,475 = 6,64 rad./s;  

ε6c3 = a6c3/r = 0,032/0,475 = 0,068 ≈ 0,07 
rad/s2.  

5) Check whether the non-strict inequality (65) 

is satisfied: 
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or considering that 6= , ε6 = 0,888 rad/s2. 

Comparing the result 6=  = 0,888 ≈ 0,9 

rad/s2 with data according to formula (51): ε6c3 ≈ 0,07 
rad/s2, we make sure that the non-strict inequality 

(65) does not hold, since ε6c3 < ε6, i.e., 0.07 < 0.9.  

This, in turn, once again confirms the possibility 
of rolling wheels without slipping on the rolling 

surfaces of rail threads when the car moves along the 
slope of the marshalling yard. 

6) Let's check the possibility of wheel rolling 

with simultaneous sliding according to formulas (66) - 
(70). 

According to the first formula (67), the angular 
acceleration of the wheel, rad/s2: 
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Let us calculate the speed of the wheel sliding 
along the rail according to the first formula (68), 

taking into account the fact that a6c3 = |1.7|, m/s: 

v6c3 = a6c3∙t6c3 = – 1,7∙7,934 = – 13,46. 
According to the second formula (68), the 

angular velocity of the wheel, rad/s: 

.05,7934,7888,03с63с6 === t
 

Let us calculate the speed of the center of mass 

C of the wheel using the formula (70), m/s: 
v6c3 = ω6c3∙r = 7,05∙0,475 ≈ 3,35.  

Let us produce the sliding speed vx = vxP of the 

point of contact P of the wheel with the rail according 
to the formula (69), m/s: 

.8,1635,3464,13 −−−=−= rCCx vxv 
  

Analyzing the results of calculating the sliding 
speed vx = vxP of the point of contact P of the wheel 

with the rail (see Pic. 15), we make sure that the sign 
of the speed turned out to be negative, which means 

that the wheel cannot roll with simultaneous sliding. 

Therefore, in accordance with condition (19), 
when the car moves along the slope of the marshalling 

yard, it is as if the wheels are rolling with simultaneous 
sliding. 

Summarizing the results of calculations, it can 

be argued that when the car moves along the downhill 
part of the hill, the conditions for pure rolling of the 
wheels of the wheel pairs of the car on the rolling 
surfaces of rail threads are observed, which is true and 

does not contradict the theory of rolling wheels of 
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engineering mechanics [35–47] (see the last column 
on 36 in [4]). 

Thus, the results of the studies performed on 

the basis of the provisions of geometric (see [1, 2 
TrNTU No. 11 2018 and No. 1 2019]) and analytical 

statics, supported by calculated data, thoroughly made 
it possible to prove that on the high-speed sections of 

the downhill part of the marshalling yard, the 
movement of wheelsets of the car occurs with the 
rolling of the wheels on the rolling surfaces of the rail 
threads. 

 

CONCLUSIONS 
1. Taking into account that the existing methods 

of hump calculations [4 - 9, 15, 16, 20, 24, 28, 31, 32] 

are developed on the basis of a "deep" theoretical 
understanding of the results of extensive field 

experimental studies to determine the specific resistance 
to movement, as non-ideal connections, and are 

empirical in nature. 
2. A thorough critical analysis of the content of 

existing methods for calculating hump yards [2, 4 - 9, 15, 

16, 20, 24, 28, 31, 32] made it possible to identify the 
following undeniable assumptions and incorrectness, 

which, in our opinion, is unacceptable. So, for example, 
the theoretical provisions of the existing methodology for 

hump structural and technological calculations are based 

on the concepts of connections (ideal and non-ideal) 
known in theoretical and engineering mechanics [36–48]. 

However, these physically incompatible concepts are 
widely used, for example, in the same formula for 

determining the estimated height of the slides and the 
speed of rolling the car, both in high-speed sections and 

in the braking positions of the marshalling yard, which is 

fundamentally erroneous and unacceptable. 
Otherwise, it is erroneous and / or unacceptable to 

use the formulas derived for an ideal connection when 
solving engineering problems of transport science (where 
the connections are not ideal) (see formulas (6) and (7) 

in paragraph I). 
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