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1- INTRODUCTION 

                Spatial econometrics is one of the concepts 
of traditional econometrics, Because it deals with the 

spatial phenomenon of each variable on the basis of 

place, these phenomena are specific and known 
measurements and the errors resulting from them are 

random variables that can be controlled by studying 
their behavior [4] , As for fuzzy statistics, it has 

recently emerged after the emergence of the theory of 

fuzzy aggregates to be concerned with phenomena 
whose variables cannot be measured in points, but 

rather measured in periods, or what is described as 
uncertain cases or cases with fuzzy data because of its 

characteristics that make them unclear such as 
variables that belong in certain proportions to their 

aggregates. It has no complete affiliation, as well as 

linguistic variables that cannot be measured 
numerically, and there are variables that are measured 

roughly, but in fact they are ambiguous. As a result, 
fuzzy logic has become applied in many fields. The 

Artificial Intelligent model, especially in the field of 

artificial intelligence, is a technique that has a 
mechanical ability to find solutions to various scientific 

and applied problems, This is one of the reasons that 
prompted us to study the fuzzy logic in the general 

linear spatial regression, we get  fuzzy pure spatial 
autoregressive model for fuzzy trapezoid data by 

centroid  method, and we use least squares to 

estimated parameters. 
 

2- BASIC CONCEPTS IN FUZZY LOGIC 
1-2- Fuzzy Set  

              It is set whose components have value of  

belonging, called the degree of membership, which are 
real numbers within the closed interval [0,1], and the 

degree membership is expressed as 𝜇𝐴(𝑥)   that 

represents the degree of belonging the element from 

the variable X to The fuzzy set A is written as: 

𝐴 = (𝑥 , 𝜇𝐴(𝑥))     ∶   𝜇𝐴(𝑥) ∶ 𝑥 → [0,1] 

The memberships change from full or complete to 

non-membership, or partial membership .  [11] [5]  
2-2- Crisp Set 

          They are the elements that have a specific 

characteristic, which takes one of the two values, (1) 
when the element belongs to the set and (0) when the 

particular element does not belong to the set .it is 
called crisp set  to distinguish it from the fuzzy set in 

concepts, let we have a set  A  known as a function 
and called the characteristic function as : 

𝜒𝐴(𝑥) = [

0     𝑖𝑓           𝑥 ∉ 𝐴

1      𝑖𝑓           𝑥 ∈ 𝐴
] 

 
3- 2-Alph Cat Set    (𝜶 − 𝒄𝒂𝒕  𝒔𝒆𝒕) 
              Let A fuzzy subset in universal set X  , then 
we define an (α − cat  set)   of A as:     

𝐴[𝛼] = {𝑥 ∈ 𝑋 ∶  𝜇𝐴 ≥ 𝛼}   ,    𝛼 ∈ [0,1] 

4-2- Strong  (𝜶 − 𝒄𝒂𝒕  𝒔𝒆𝒕)  
              Let A fuzzy subset in universal set X  , then 
we define a strong   (α − cat  set) of A as: 

𝐴[𝛼+] = {𝑥 ∈ 𝑋 ∶  𝜇𝐴 > 𝛼}   ,    𝛼 ∈ [0,1] 

5-2- Normalized Fuzzy Set (Core)  
               A fuzzy subset A in universal set X is called 

normalized (Core) if :  
                                       𝑆𝑢𝑝𝑥∈𝑋𝜇𝐴(𝑥) = 1 

6-2- Convex Fuzzy Set 

             A fuzzy  subset  A in universal set X is called  
convex if : 
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𝜇𝐴(t) ≥ min [𝜇𝐴 (𝑟)  ,  𝜇𝐴(𝑠) ]    and  𝑡 = 𝜆𝑟 + (1 − 𝜆)𝑠    

where     𝑟 , 𝑠 ∈ 𝑅    ,    𝜆 ∈ [0,1]   .  
7-2- Fuzzy number 
               A fuzzy  subset  A in universal set X is called  

fuzzy number  if satisfy following condition : 
1- convex fuzzy set 

2- normalized fuzzy set (maximum membership value 

is 1) 
3- it’s membership function is piecewise continuous. 

4- It is defined in the real number. .[6 ]  [  7 ]  
8-2- Triangular fuzzy number 

            A fuzzy  subset  A in universal set X is called  
Triangular fuzzy number that expressed as 𝐴 = (𝑎, 𝑏, 𝑐)  
where 𝑎 < 𝑏 < 𝑐 if has membership functions as: 

𝜇𝐴(𝑥) =

[
 
 
 
 
 
 
𝑥 − 𝑎

𝑏 − 𝑎
    𝑖𝑓    𝑎 ≤ 𝑥 ≤ 𝑏

  
𝑐 − 𝑥

𝑐 − 𝑏
     𝑖𝑓     𝑏 ≤ 𝑥 ≤ 𝑐

   0                   𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒]
 
 
 
 
 
 

…… …… … (1) 

 
9-2- Trapezoidal fuzzy number 
               A fuzzy  subset  A in universal set X is called  
Trapezoidal fuzzy number that expressed as 𝐴 =
(𝑎, 𝑏, 𝑐, 𝑑)   where 𝑎 < 𝑏 < 𝑐 < 𝑑  if has membership 

functions as: 
 

 

𝜇𝐴(𝑥) =

[
 
 
 
 
 
 
 
 
𝑥 − 𝑎

𝑏 − 𝑎
     𝑖𝑓    𝑎 ≤ 𝑥 ≤ 𝑏

    1         𝑖𝑓       𝑏 ≤ 𝑥 ≤ 𝑐

  
𝑑 − 𝑥

𝑑 − 𝑐
     𝑖𝑓     𝑐 ≤ 𝑥 ≤ 𝑑

   0                   𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒 ]
 
 
 
 
 
 
 
 

…… … …… (2) 

 
10-2-Convert Fuzzy Number To Crisp Number 
(Defuzzification)  

                Let A  fuzzy number we can transform  A  
to crisp by centriod method  this process  is called 

defuzzification ,the centriod method  has the following  

formula:  

𝐴𝐶 =
∫𝑥𝜇𝐴(𝑥)𝑑𝑥

∫ 𝜇𝐴(𝑥)𝑑𝑥
… …… …… (3) 

This method purposed by Sugeno in 1985 is the most 

commonly used 
technique and it is very accurate . .[ 10] [12] [3]   

11-2- Convert crisp number to fuzzy number  
(Fuzzyfication) 

          The convert process crisp number to fuzzy is 

called Fuzzyfication , and use membership function in 
convert which requires have range  from zero and one, 

as shown in the following figure: 

 
3 - MATHEMATICAL MODEL OF FUZZY MULTIPLE 

LINEAR REGRESSION  
           The mathematical model for fuzzy linear 

regression is defined as: 
𝑦̃𝑖 = 𝛽0 + 𝛽1𝑥̃1𝑖 + 𝛽2𝑥̃2𝑖 + ⋯… .+𝛽𝑛𝑥̃𝑛𝑖 + 𝑒̃𝑖        ,   𝑖

= 1,2, … …𝑚 

𝑌̃ = 𝛽𝑋̃ + 𝐸̃ … …… …… …(4) 
Where 
𝑋̃ = [1, 𝑥̃1𝑖 , 𝑥̃2𝑖 , … …… . . 𝑥̃𝑛𝑖] vector of independent fuzzy 

variables, expressed as follows :  𝑥̃ = (𝑥𝐿 , 𝑥𝑀 , 𝑥𝑅) 
where  𝑥𝐿   left side,  𝑥𝑅  right side and    𝑥𝑀  center 

value. 
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𝛽 = [𝛽0, 𝛽1, 𝛽2, … … . . 𝛽𝑛]  vector of  parameters of fuzzy 

regression model are real value. 
𝑌̃ = [𝑦̃1, 𝑦̃2, 𝑦̃3, … … . . 𝑦̃𝑛]  vector of dependent fuzzy 

variables, expressed as follows: 𝑦̃ = (𝑦𝐿 , 𝑦𝑀 , 𝑦𝑅). 
𝐸̃ = [𝑒̃1, 𝑒̃2, 𝑒̃3, … … . . 𝑒̃𝑛]  vector represents the fuzzy 

errors of the model and written as: 𝑒̃ = (𝑒𝐿 , 𝑒𝑀, 𝑒𝑅) . 

[14] 

1-3 –Parameter Estimation For Fuzzy 
Regression Models By Centroid Method  

   In traditional general linear regression  
𝑌 = 𝛽𝑋 + 𝐸 …… …… … . (5) 

Where 
𝑌 = [𝑦1, 𝑦2, 𝑦3, … … . . 𝑦𝑛]𝑡 
𝛽 = [𝛽0, 𝛽1, 𝛽2, … … . . 𝛽𝑛]𝑡 
𝐸 = [𝑒1, 𝑒2, 𝑒3, … … . . 𝑒𝑛]𝑡           where       𝑒~𝑁(0, 𝜎2𝐼) 

𝑋 =

[
 
 
 
 
1      𝑥11       𝑥12 … … . . 𝑥1𝑃

1       𝑥21     𝑥22 …… …𝑥2𝑃

.   .    .     .    .    .    .    .    .   .
.    .    .    .    .    .   .   .   .   .   .
1   𝑥𝑛1      𝑥𝑛2 …… … . 𝑥𝑛𝑃 ]

 
 
 
 

 

Then the lest squares estimator of  𝛽  is  

𝛽̂ = (𝑋𝑡𝑋)−1𝑋𝑡𝑌 

As for fuzzy general linear regression that has model 

(4)  where 

(𝑥̃𝑖𝑗 , 𝑦̃𝑖𝑗) , 𝑖 = 1,2, … …𝑛   𝑎𝑛𝑑  𝑗 = 1,2, …… … . 𝑃 are 

observational data set  of  fuzzy input and output and 

all observations are triangular fuzzy numbers. And   
𝛽0, 𝛽1, 𝛽2, … …… . 𝛽𝑛 are real value ,  𝑒̃  error terms are 

also fuzzy number, Let 
𝑌̃ = [𝑦̃1, 𝑦̃2, 𝑦̃3, … … . . 𝑦̃𝑚]𝑡 
𝐸̃ = [𝑒̃1, 𝑒̃2, 𝑒̃3, … … . . 𝑒̃𝑚]𝑡 

𝑋̃ =

[
 
 
 
 
1      𝑥̃11       𝑥̃12 … … . . 𝑥̃1𝑃

1       𝑥̃21     𝑥̃22 …… … 𝑥̃2𝑃

.   .    .     .    .    .    .    .    .   .
.    .    .    .    .    .   .   .   .   .   .
1   𝑥̃𝑛1      𝑥̃𝑛2 …… … . 𝑥̃𝑛𝑃 ]

 
 
 
 

 

The model in  ( 5  )  we can written as matrix form : 
𝑌̃ = 𝛽𝑋̃ + 𝐸̃ …… …… … . (6) 

Since 𝑋̃𝑖𝑗  ,   𝑌̃𝑖   𝑎𝑛𝑑  𝐸𝑖̃ are fuzzy triangular number then 

written as 
𝑥̃ = (𝑥𝐿 , 𝑥𝑀 , 𝑥𝑅)  , 𝑦̃ = (𝑦𝐿 , 𝑦𝑀 , 𝑦𝑅)  and  𝑒̃ = (𝑒𝐿 , 𝑒𝑀 , 𝑒𝑅) . 

the fuzzy data are transformed into crisp data by the 
centroid method with formal: 

𝑥𝐶 =
∫𝑥𝜇𝑥̃ (𝑥)𝑑𝑥

∫ 𝜇𝑥 (𝑥)𝑑𝑥
=

1

3
(𝑥𝐿 + 𝑥𝑀 + 𝑥𝑅) …… … .…… . (7) 

𝑦𝐶 =
∫𝑦𝜇𝑦̃ (𝑦)𝑑𝑦

∫ 𝜇𝑦̃ (𝑦)𝑑𝑦
=

1

3
(𝑦𝐿 + 𝑦𝑀 + 𝑦𝑅) … …… … . ( 8 ) 

Where   𝑥𝐶  and  𝑦𝐶   crisp data and    𝜇𝑥(𝑥) ,  𝜇𝑦̃(𝑦)   

membership function for 𝑥𝑖𝑗  and    𝑦𝑖𝑗   defined    in  

(2.5  )  and   ( 2.6  )   Then the estimator for 𝛽 is: 

𝛽̂ = (𝑋𝑡
𝐶𝑋𝐶)

−1𝑋𝑡
𝐶𝑌𝐶 

Where  

𝑋𝐶 =

[
 
 
 
 
1      𝑥11𝐶        𝑥12𝐶 …… . . 𝑥1𝑃𝐶

1       𝑥21𝐶      𝑥22𝐶 … …… 𝑥2𝑃𝐶

.   .    .     .    .    .    .    .    .   .
.    .    .    .    .    .   .   .   .   .   .

1   𝑥𝑛1𝐶       𝑥𝑛2𝐶 … …… . 𝑥𝑛𝑃𝐶 ]
 
 
 
 

 

𝑌𝐶 = [𝑦1𝐶 , 𝑦2𝐶 , 𝑦3 , …… . . 𝑦𝑛]𝑡 
[2] [8] 

 
4 - FUZZY SPATIAL LINEAR  REGRESSION 

(FUZZY SPATIAL LAG MODEL ) 
The form of  general spatial  model that contain both 

spatially lagged and error structure spatial correlation , 

As shown in the following formula : 
  

𝑌 = 𝜆𝑊𝑌 + 𝑍𝛽 + 𝑢    ,    |𝜆| < 1… …… …… (9) 
                   𝑢 = 𝜌𝑊𝑢 + 𝑒       ,    |𝜌| < 1 

Where   
 𝑍 = [𝑋    𝑊𝑋]     and   𝛽 = [𝛽1    𝛽2]  
 𝑌 : vector (𝑛 × 1)  of  depend variable. 

𝑋:  a matrix of non-stochastic regression.  

𝑊: weight matrix. 
𝑒 𝑋 = 𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎𝜖𝑛

2⁄ 𝐼𝑛) 
If we assuming  that 𝜆 ≠ 0 and 𝜌 = 0 in model ( 9 ) 

we get to spatial lag model ( SLM)  or  spatial 

autoregressive model ( SARM) , or mixed regressive 

model ,  where insert independent variable spatial lag 
as once observes variable  𝑊𝑌   and spatial lag 

parameter on response variable  𝜆  it is describe the 

strength of spatial response, the mathematical formula 

for this model is :  
𝑌 = 𝜆𝑊𝑌 + 𝑍𝛽 + 𝑒……………(10) 

𝑒~𝑁(0, 𝜎𝜖𝑛
2 𝐼𝑛) 

This model (10) we can expression  as fuzzy model  as  
𝑌𝐶 = 𝜆𝑊𝑌𝐶 + 𝑍𝐶𝛽 + 𝑒𝐶…………(11) 

𝑒𝐶~𝑁(0, 𝜎𝜖𝑛
2 𝐼𝑛) 

Where : 
𝑌𝐶   : vector  (𝑛 × 1) is centroid of trapezoidal fuzzy 

number are depend variable . 
𝐼 : Identity matrix (𝑛 × 𝑛) . 
𝜆 : is parameter of spatial regression .    

𝑊:  spatial weights matrix(𝑛 × 𝑛) . 
𝑍𝐶  : matrix (𝑛 × 𝑘)  is centroid of trapezoidal fuzzy 

number are observation variables . 
𝛽: vector (𝑛 × 1)  of parameter require estimate him . 

𝑒𝐶  : vector (𝑛 × 1)   is centroid of trapezoidal fuzzy 

number are spatial random error. [5] [9] 
1-4 - Ordinary Least Square (OLS)for (FSLM)or( 

FSARM) 

           The fuzzy observation depended variables that 
fuzzy spatial lagged model (11) are associated with the 

term  fuzzy error ,where it is breaches one of the 
hypotheses of (OLS) ,then the results of this method 

to estimation are biased and inconsistent because  
𝑊𝑦𝐶   with error𝑒𝐶   are not independent , to derive 
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estimation formulas by ordinary least square  we use 
the following steps : 

𝑌𝐶 = 𝜆𝑊𝑌𝐶 + 𝑍𝐶𝛽 + 𝑒𝐶 
                                      𝑒𝐶 = 𝑌𝐶 − 𝜆𝑊𝑌𝐶 − 𝑍𝐶𝛽 
𝑒′𝐶𝑒𝐶 = 𝑌′𝐶𝑌𝐶 − 2𝑌′

𝐶𝑍𝐶𝛽 − 2𝜆𝑌′
𝐶𝑊𝑌𝐶 + 2𝜆𝑌′

𝐶𝑊′𝑍𝐶𝛽 +
𝛽′𝑍′

𝐶𝑍𝐶𝛽 +  
              +𝜆2𝑌′

𝐶𝑊′𝑊𝑌𝐶  

We derive (𝑒′𝐶𝑒𝐶) to  𝛽  and equal to zero we get: 

⟹ 𝛽̂ = (𝑍′
𝐶𝑍𝐶)−1𝑍′

𝐶𝑌𝐶

− 𝜆(𝑍′
𝐶𝑍𝐶)−1𝑍′

𝐶𝑊𝑌𝐶 … … …… (12) 

⟹ 𝛽̂ = 𝑏0 − 𝜆𝑏1 

and  again derive (𝑒′𝐶𝑒𝐶)  to  𝜆  and equal to zero we 

get: 

⟹  𝜆̂ = [𝑌′
𝐶𝑊′𝑊𝑌𝐶 − 𝑏′

1𝑍
′
𝐶𝑊𝑌𝐶]−1[𝑌′𝐶𝑊𝑌𝐶 −

𝑏′
0𝑍

′
𝐶𝑊𝑌𝐶] …. 

                                                                                    
………..(13 ) 

And the variance is  
 𝜎2

=
(𝑌𝐶 − 𝜆̂𝑊𝑌𝐶 − 𝑍𝐶𝛽̂)

′
(𝑌𝐶 − 𝜆̂𝑊𝑌𝐶 − 𝑍𝐶𝛽̂)

𝑛 − 𝑘
…… …… (14) 

[1] [13]. 
2-4 - Maximum Likelihood Estimation (MLE) for 

(FSLM) or ( FSARM) 

Since the Maximum likelihood estimation considered  
one of the most important ways because it gives the 

best estimate for parameter from among several 
possible estimates so the researcher applied this 

method to estimate parameter fuzzy spatial 

autoregressive model  (11 ) as: 
⟹  𝑌𝐶 − 𝜆𝑊𝑌𝐶 = 𝑍𝐶𝛽 + 𝑒𝐶 

Thus, the log likelihood function for  𝑌 of the fuzzy 

spatial autoregressive model is obtained by adding the 
term  𝐿𝑛|𝐼 − 𝜆𝑊|to the log likelihood function of the 

standard regression model 
𝐿(𝛽, 𝜆, 𝜎2 𝑌𝐶⁄ , 𝑍𝐶)

=
1

(2𝜋𝜎2)𝑛 2⁄
|𝐼

− 𝜆𝑊| exp [−
1

2𝜎2
𝑒′𝑒] … …… (15) 

𝐿𝑛(𝐿) = −
𝑛

2
𝐿𝑛(2𝜋) −

𝑛

2
𝐿𝑛𝜎2 + |𝐼 − 𝜆𝑊|

−
1

2𝜎2
𝑒′𝑒 …… …… … (16) 

Where  
𝑒𝐶 = 𝑌𝐶 − 𝜆𝑊𝑌𝐶−𝑍𝐶𝛽 … …… … . . (17) 

Putting equation ( 17 ) in equation ( 16) we get : 

𝐿𝑛(𝐿) = −
𝑛

2
𝐿𝑛(2𝜋) −

𝑛

2
𝐿𝑛𝜎2 + |𝐼 − 𝜆𝑊| − 

−
1

2𝜎2
(𝑌𝐶 − 𝜆𝑊𝑌𝐶 − 𝑍𝐶𝛽)′(𝑌𝐶 − 𝜆𝑊𝑌𝐶

− 𝑍𝐶𝛽) …… …… (18) 
On account of this correction the Maximum Likelihood 

Estimation (MLE) estimates will differ from the 

Ordinary Least Square  (OLS) estimates. They coincide 
for 𝜆 = 0 where the fuzzy spatial autoregressive model 

approaches the standard regression model. 
 we get the derivative for  𝛽 ,𝜎2  in log of likelihood 

and equal to zero we get : 
𝛽𝑀𝐿𝐸 = (𝑍′𝐶𝑍𝐶)

−1𝑍′𝐶𝐴𝑌𝐶 

Where 
𝐴 = (𝐼 − 𝜆𝑊) 
𝛽𝑀𝐿𝐸 = (𝑍′

𝐶𝑍𝐶)
−1𝑍′

𝐶(𝐼 − 𝜆𝑊)𝑌𝐶 
= (𝑍′

𝐶𝑍𝐶)−1𝑍′
𝐶𝑌𝐶 − 𝜆(𝑍′

𝐶𝑍𝐶)−1𝑍′
𝐶𝑊𝑌𝐶 

𝑏𝑂 = (𝑍′
𝐶𝑍𝐶)−1𝑍′

𝐶𝑌𝐶      𝑎𝑛𝑑     𝑏𝐿 = (𝑍′
𝐶𝑍𝐶)

−1𝑍′
𝐶𝑊𝑌𝐶    

 
𝛽𝑀𝐿𝐸 = 𝑏𝑂 − 𝜆𝑏𝐿………….(19) 
𝑒𝐶 = 𝑌𝐶 − 𝜆𝑊𝑌𝐶−𝑍𝐶𝛽𝑀𝐿𝐸  = 𝑌𝐶 − 𝜆𝑊𝑌𝐶−𝑍𝐶(𝑏𝑂 − 𝜆𝑏𝐿) 
= 𝑌𝐶 − 𝑍𝐶𝑏𝑂 − 𝜆(𝑊𝑌𝐶 − 𝑍𝐶𝑏𝐶) 
𝑒𝑂𝐶 = 𝑌𝐶 − 𝑍𝐶𝑏𝑂 
𝑒𝐿𝐶 = 𝑊𝑌𝐶 − 𝑍𝐶𝑏𝐿 

𝑒𝐶 = 𝑒𝑂𝐶 − 𝜆𝑒𝐿𝐶 …… … . . (20) 
According to our condition the error variance can be 

estimated by: 

𝜎𝑀𝐿𝐸
2 =

(𝑒𝑂𝐶 − 𝜆𝑒𝐿𝐶)′(𝑒𝑂𝐶 − 𝜆𝑒𝐿𝐶)

𝑛
… …… …… (21) 

Where : 
𝑏𝑂: vector of the regression parameter  𝑌𝐶 for 𝑍𝐶 

𝑏𝐿: vector of regression parameter   𝑊𝑌𝐶 for 𝑍𝐶 

𝜆 :  parameter of spatial regression  model . 

𝑒𝑂 :  vector of another regression model  𝑌𝐶  for  𝑍𝐶 

𝑒𝐿 : vector of another regression model 𝑊𝑌𝐶 for 𝑍𝐶 

by formulation for the calculation the determinant  
|𝐼 − 𝜆𝑊| as below: 

|𝐼 − 𝜆𝑊| = ∏ (𝐼 − 𝜆𝑤𝑖

𝑛

𝑖=1
) 

𝐿𝑛|𝐼 − 𝜆𝑊| = ∑ 𝐿𝑛(𝐼 − 𝜆𝑤𝑖

𝑛

𝑖=1

) 

After get the Eigen values for weights matrix, the 
solution can be using the (Nonlinear optimization) 

method, then putting the parameters in (concentrated 
likelihood function ) as follows: 

𝐿𝐶 = −
𝑛

2
𝐿𝑛 [

1

𝑛
(𝑒𝑂𝐶 − 𝜆𝑒𝐿𝐶)

′(𝑒𝑂𝐶 − 𝜆𝑒𝐿𝐶)]

+ 𝐿𝑛|𝐼 − 𝜆𝑊| … … . (22) 
By using the iterative method for concentrated 
likelihood function ,we can obtained   𝜆  value. [4] 

 
5 - SPATIAL WEIGHTS MATRIX (ROOK 

CONTIGUITY) 

           It is  a square matrix   which it elements 
positive value, and it is not necessary to be symmetric 

, and it is based on geographic arrangement of the 
observations, or contiguity  , i.e. the relations  among 

location with other location in one row of the matrix 
and the diagonal elements in the matrix are equal to 

zero ,the  Spatial weights matrix by Rook contiguity is 
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equal to 1 if the two areas (locations)   neighbor by 
limited and have relation between the two areas 

(locations)   in any side, and it is equal to  0  
otherwise. This matrix used in applications more than 

the others. [2] [10] 

 
 
6 - MORAN TEST FOR SPATIAL REGRESSION 

             It is a general measure depends on the 

general linear model GLM and uses for autocorrelation 
coefficient (called the Moran coefficient because Moran 

is the name of the Scientist that find the test)  
the Moran formula is: 

where we using row – standardized where sum of row 
equal to 1 in this case (𝑛 = 𝑆0) that is work to simplify 

the Moran's formula as follows : 

𝐼 =
(𝑒′𝑤𝑒)

(𝑒′𝑒)
… …… …… …(23) 

To know if the value of the Moran coefficient it is 

Indicator Statistics in certain degree of confidence we 
must use moran (Z) test with Hypotheses: 
𝐻0 = 𝜆 = 0      ,   𝜃
= 0             𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 
𝐻1 ∶ 𝑎𝑡 𝑙𝑒𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓   𝜆 ≠ 0    𝑜𝑟   𝜃

≠ 0  𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 

𝑍 =
𝐼 − 𝐸(𝐼)

√𝑉(𝐼)
…… … …… …(24) 

𝐸(𝐼) =
𝑛(𝑡𝑟(𝑀𝑊)

𝑆0(𝑛 − 𝑘)
 

𝑉(𝐼) =
𝑡𝑟(𝑀𝑊𝑀𝑊′) + (𝑡𝑟(𝑀𝑊))2 + (𝑡𝑟(𝑀𝑊))2

(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)
(
𝑛

𝑆0

)2

− (𝐸(𝐼))2 

Where : 
𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′ Idempotent Matrix that is (𝑛 × 𝑛)  
and symmetric. 
𝑡𝑟 : Sum diagonal element . 
𝑘 : Number of explanatory variables. 

The calculated value  𝑍   is compared with value of  Z

table for (𝛼 2⁄ ) , and where Moran test is significant 

that is mean relation between geographic location that 
refers to use spatial regression model and not enough 

general linear model (GLM) and we have spatial 
dependency. [13] 

7-COMPARISON CRITERIA FOR CHOOSING THE 
BEST MODEL 

               The method of selecting a particular model 
from among a many of models is an important aspect 

of data analysis as it leads us to choose the best 

model , where the use of certain statistical criteria are 
as described below: 

1-7- Root Mean Squares Error ( RMSE) 
                 It is the square root of the sum of the 

squares errors divided by (n-k-1) and is calculated for 

all models, and the model which the value of the 
square root of the mean squares is smaller errors is 

the best model, and the general formula for it is: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛 − 𝑘 − 1
… … …… . (25) 

 
2-7- Mean Absolute Percentage Error   (MAPE) 

             It is the sum of dividing the absolute value of 
the error by the real value divided by the number of 

observations (n). The general formula for it is: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

(𝑦𝑖 − 𝑦̂𝑖)
2

𝑦𝑖

| … …… …… . (26)

𝑛

𝑖=1

 

And the smaller value is the best model.[ 4]  
 

8- PRACTICAL PART 

1-8 – Estimate initial value 
             In this part of the paper, we used, real data 
these data represent the number of deaths 𝑌̃𝑖 resulting 

from traffic accidents in Iraq for six governorates 
(Baghdad, Anbar, Diyala, Salah al-Din, Kirkuk, 

Nineveh) by 38 observations. And this traffic accidents 
as Crash accidents 𝑋̃1 and Overturn  accidents 𝑋̃2 and 

Run over accidents 𝑋̃3,this data represent trapezoidal 

fuzzy number  and has membership function, in this 

paper explains given idea about dealing with such 
data, in this peper transform fuzzy data into Crisp 

data, by the formula : 

𝑋𝐶 =
1

4
(𝑋𝐿 + 𝑋𝑀1 + 𝑋𝑀2 + 𝑋𝑅)   ,   𝑌𝐶

=
1

4
(𝑌𝐿 + 𝑌𝑀1 + 𝑌𝑀2 + 𝑌𝑅) 

 

So the fuzzy multiple regression formula for this data 
is 

𝑌𝐶𝑖 = 𝛽0 + 𝛽1𝑋𝐶1𝑖 + 𝛽2𝑋𝐶2𝑖 + 𝛽3𝑋𝐶3𝑖 

Where  
𝑌𝐶𝑖:  the number deaths in traffic accidents (D.A) 

𝑋𝐶1𝑖 : Crash accidents (C.A) 

𝑋𝐶2𝑖 Overturn  accidents  (O.A) 

𝑋𝐶3𝑖 ∶ Run over accidents  (R.A) 

We get 𝛽i by ordinary least square 

Table (1) estimated initial value of beta 
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R.A O.A C.A Constant Model 

0.2653 0.7951 0.0544 7.3078 𝛽i 

 

2-8- Moran Test 
            The initial values that  estimated are used in 

the Moran test, which we obtained the following 

result: 
Table (2) result moran test 

𝐙(𝐈) 𝐈 

0.7878 -0.0372 

 
Since the value of  𝑍(𝐼)  is less than the tabular value 

of  Z  in terms of (α/2), then we accept the null 

hypothesis, which states that the data is spatially 
dispersed and randomly. 

3-8- Estimate parameter  FSARM  By Using  
(OLS) and ( MLE) 

                To estimate the parameters of the Fuzzy 

Spatial Lag  model , we calculated   spatial matrix 
weights between locations with 38×38  by (Rook 

contiguity), and we are have  model is as follows: 
𝑌𝐶 = 𝜆𝑊𝑌𝐶 + 𝑍𝐶𝛽 + 𝑒𝐶 

And after estimating the parameter  𝛽  and 𝜆 by 

Ordinary Least Square method as in formula ( 12  ) 

and (  13  ) we get : 
 
Table (3) result estimating the parameter  𝜷 and 

𝝀 by  OLS 

𝜷 15.9304   0.0043 0.6194     0.34
92 

-
0.03

21 

0.24
36 

0.03
62 

𝝀 −0.0911 

 

 
And we estimating the parameter  𝛽  and 𝜆 by 

Maximum Likelihood method as in formula ( 19  ) and 
(  22  ) we get : 

 
Table (3) result estimating the parameter  𝜷 and 

𝝀 by  OLS 

𝜷 17.12

08 

0.02

08 

0.54

48 

0.34

20 

- 

0.03
95 

0.17

52 

0.02

44 

𝝀                                                           - 0.0455 

 
4-8- Calculate Different Criteria by Using (SAR) 

Model 
            After estimate  𝛽 , 𝜆  for  SAR model by 

ordinary least square and maximum likelihood 
methods, and using rook matrix, we must use criteria 

for finding the best method that estimate the model. 
Table (4) Calculate Different Criteria by Using 

(SAR) Model 

Method RMSE MAPE 

OLS 14.6093 1.4955 

MLE 14.7019 1.5101 

 

The results showed in the table above as follows 
: 

1 - RMSE: Is a measure used for differences between 
the value predicted by a model or an estimator and in 

this paper the value actually observed in RMSE is the 

smaller value in OLS method and this means that the 
method of  OLS  is the best method to estimate the 

SAR model.  
2 - MAPE: is measure of prediction accuracy of a 

forecasting method in statistics, in this measure the 

smaller value is in OLS method than LME method, this 
mean that the OLS is the best method to estimate SAR 

model.  
 

9- RECOMMENDATIONS 
1- Using maximum likelihood and ordinary least 

square method to compare between another 

model as Fuzzy Pure Spatial Autoregressive 
Model   , Fuzzy Lagged Independent Variable 

Model  and Fuzzy Spatial Error Model   
2- Fuzzyfication the data into triangular fuzzy 

number and comparing it with the trapezoidal 

fuzzy number for showing a difference 
between them in the estimate. 

3- There are other methods than the centriod 
method in dealing with fuzzy data such as 
alpha cat (𝜶 − 𝒄𝒂𝒕). 

4- Study and application real data on other fuzzy 
spatial models 
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Table (4) centroid data and results error 

𝒆 𝒀̂𝑪𝒊 
𝒃𝒚 𝑴𝑳𝑬 

 

𝒆 𝒀̂𝑪𝒊 
𝒃𝒚 𝑶𝑳𝑺 

 

𝑿𝑪𝟑𝒊 𝑿𝑪𝟐𝒊 𝑿𝑪𝟏𝒊  𝒀𝑪𝒊 Location  

Cities 

 

14.6922 37.3078 13.7809 38.2191 68 1 6 52 Mosul 1 

-7.4866 23.4866 -8.0230 24.0230 20 5 26 16 AL-Hamdaniya 2 

0.5809 15.4191 0.1272 15.8728 4 1 6 16 Telkaif 3 

-11.4191 15.4191 -11.8728 15.8728 4 1 6 4 Sinjar 4 

-1.5982 17.5982 -2.3505 18.3505 4 5 6 16 Tel afar 5 

0.0300 15.9700 -2.9088 18.9088 4 1 6 16 AL-Hatra 6 

0.5809 15.4191 0.1272 15.8728 4 1 6 16 Maqmoor 7 

1.4872 38.5128 4.9361 35.0639 52 13 46 40 Kirkuk 8 

-3.5104 31.5104 -0.7601 28.7601 20 21 26 28 Daquq 9 

6.7362 21.2638 9.8678 18.1322 4 13 6 28 Debes 10 

-4.5350 20.5350 -3.1687 19.1687 52 1 66 16 Tikrit 11 

-1.0489 5.0489 -0.6286 4.6286 4 5 6 4 Tuz kurmato 12 

10.9511 5.0489 11.3714 4.6286 4 5 6 16 Samara 13 

1.1302 2.8698 1.8490 2.1510 4 1 6 4 Baled 14 

1.1302 2.8698 1.8490 2.1510 4 1 6 4 AL- Dor 15 

-1.0489 5.0489 -0.6286 4.6286 4 5 6 4 AL- shargat 16 

17.9778 70.0222 16.3784 71.6216 132 13 186 88 Baquba 17 

-5.1938 21.1938 7.8579 23.8579 4 9 46 16 AL- meqdadia 18 

44.5597 31.4403 41.5141 34.4859 20 17 66 76 AL-Kalus 19 

19.3728 23.3728 -22.3356 26.3356 4 13 46 4 Kanaqeen 20 

-4.3613 20.3613 -7.6859 23.6859 4 9 6 16 Baladrouz 21 

4.6875 59.312 4.6221 59.3779 132 17 106 64 Al-Rasafa 22 

-12.4198 28.4198 -12.6878 28.6878 52 13 46 16 AL-aadamia 23 

-4.3523 20.3523 -4.5375 20.5375 36 9 26 16 AL-sader2 24 

-19.6454 23.6454 -19.6464 23.6464 52 5 26 4 AL-sader1 25 

-13.8403 53.8403 -13.7913 53.7913 116 17 126 40 AL-Karek 26 

-28.1291 32.1291 -27.8827 31.8827 68 9 66 4 AL-Kademia 27 

mailto:tesmith@seas.upenn.edu
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27.2989 12.7011 27.5267 12.4733 20 5 26 40 AL-Mahmoodia 28 

11.3664 4.6336 11.6770 4.3230 4 1 6 16 Abu-griab 29 

-0.6336 4.6336 0.3230 4.3230 4 1 6 4 AL-Taremia 30 

29.8942 10.1058 30.0904 9.9096 20 1 6 40 AL-Madayn 31 

-7.4049 23.4049 -4.6299 20.6299 20 5 146 16 AL-Rumadi 32 

-8.6319 12.6319 -7.9206 11.9206 4 1 6 4 Heet 33 

-13.4063 17.4063 -12.9620 16.9620 4 9 26 4 AL-Faloga 34 

-8.6319 12.6319 -7.9206 11.9206 4 1 6 4 Anah 35 

-10.8110 14.8110 10.3983 14.3983 4 5 6 4 Haditha 36 

1.1890 14.8110 1.6017 14.3983 4 5 6 16 AL- Rutba 27 

13.1890 14.8110 13.6017 14.3983 4 5 6 28 AL-qaem 38 

 

 


