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INTRODUCTION  
On December 2019, the world entered a state of alarm 

and dismay with the outbreak of a severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV 2) from 
Hubei-China and has infected as of the 1st October 

2021 more than 233,770,079 people worldwide. This 
caused up to 4,782,608 deaths, and the World Health 

Organization (WHO) declared on January 2020 a global 

health emergency due to the rate at how much the 
infection is spreading and the mortality rate that 

approaches 4.5 percent [1]. It is considered to be 
extremely costly to bring a new drug to the market in 

terms of time and financial investment, which is, 
respectively, on average, around ten years and 1 

billion dollars. Drug discovery alone can take up to 3 

years which is a time we cannot accept in the context 
of a global pandemic. Artificial intelligence 

methodologies proved to be very resourceful for 

solving many tasks, especially when it comes to 
computer vision, natural language processing, and 

solving core problems in biology, such as a gigantic 

leap in the prediction of the 3-D shapes of protein 
structures based on its amino-acids sequences [2] [3] 

and also using GAN architectures to search for new 
molecules [4]. Our main goal is to harvest the power 

of these methodologies in order to generate new 

molecules that can potentially treat the disease and 
thus contributing in reducing the time for the drug 

discovery process. The genetic code is oftentimes 
called the genetic blueprint as it contains all 

instructions that a cell would need to survive, 
proliferate, and perform its role in the organism. These 

instructions are found in the form of DNA; for them to 

become realized, they pass through two steps which 
are transcription and translation. In the flow of 

information, the first step is to transcribe the double-
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stranded DNA (dsDNA) template to yield a single-
stranded RNA (ssRNA) molecule, called Messenger 

RNA (mRNA). This mRNA will then carry the 
transcribed instruction from within the Nucleus into the 

Cytosol, where it will be Translated into Protein 

Product. 
Transcription Process: The Enzyme RNA Polymerase-II 

(RNA pol-II) is required for transcription to occur, as it 
binds to the template DNA strand and catalyzes the 

formation of a complementary mRNA. In Eukaryotic 

Cells, there are three main different types of RNA 
Polymerase that exist. RNA pol I transcribe the genes 

that encode Ribosomal RNAs (rRNAs). RNA pol II 
transcribes mRNA, which will be translated, yielding 

protein products. RNA pol III transcribes the genes for 

Transfer RNAs which are essential in the translation 
process. 

Translation Process: As discussed above, the product 
of Transcription is the production of a single-stranded 

mRNA copy of the gene, which next must be translated 
into a protein molecule. Translation is the process 

which by the genetic code is translated into a 

sequence of Amino Acids, which consequently form 
proteins. [5] 

 
METHOD  

The .pdb (protein data bank) file, retrieved from the 

RCSB website[6], offers a digital representation of the 
protease that can be uploaded to a docking simulation 

tool representing the structure of the main protease 
(Mpr o ) was loaded as a macromolecule to PyRx, with 

which we will simulate the docking of the newly 
generated molecule. Each simulation produces a metric 

called binding affinity score, also called the binding 

energy. Some already known drugs passing clinical 
trials, such as Hydroxychloroquine, gave a score of -

5.3 Kcal/mol. 
 Pre-processing A first step into preprocessing the 

SMILES data was to create a tokenizing function that 

would convert a SMILES string into one hot-encoded 
vector from a set of all possible tokens that will be fed 

to the neural network. And another function that would 
decode the one hot-encoded vector to its 

corresponding SMILES for further processing. Most of 

the utility functions were implemented using the RDKit 
library on Python [7], and their main purpose was to: 

• Converting SMILES to mols (and eventually 
determining whether the SMILES are valid or not). 

• Converting mols to SMILES (mainly to ensure 
that we’d use only canonical SMILES). 

• Calculating molecular weight. 

• Calculate the number of atoms, number of 
Spiros, number of Chiral centers, number of 

bridgeheads number of macro- cycles in order to 
deduce the synthetic feasibility score. 

• Writing Results to a chemical table file (.sdf) 
that’ll be passed to PyRx. 

Our goal is to generate SMILES that fits our needs; this 
can be done through different techniques. RNN with 

LSTMs has shown great success for text generation. 

Even though LSTM was first invented in 1997, training 
LSTMs with MLE still outperforms recent methods in 

text generation like Scheduling Sampling (SS), and it is 
also as good as some recent and complex architectures 

such as SeqGan [10]. LSTMs and its variants are 

known to alleviate the vanishing and exploding 
gradient problems due to a memory cell they 

contain[cite]. In the context of SMILES generation, 
these 

models typically fail due to the errors that accumulates 

with each recursion [11] and can eventually lead to 
poor quality of the generated sequences. This 

phenomenon is known as the bias exposure problem 
[28][29]. To solve this issue, we will train our model 

following the maximum likelihood estimation. Doing so, 
our model opts to choose the token with the highest 

probability. However, in the sampling phase, we 

update our model using the temperature-decoding 
method, which shrinks or enlarges probabilities to 

ensure more flexibility in the search area of the best 
token and to produce distinct and diverse generations 

while sampling our SMILES. 

We generate with this model a batch of molecules that 
will be filtered according to the swiss cheese principle 

(Fig .1); We remove duplicate molecules (SMILES 
sequence that can be generated twice or might be the 

same after the canonical form conversion). We also 
remove non-valid and erroneous molecules (molecules 

that cannot exist and don’t obey to laws of physics). 

After that, we eliminate molecules that have a great 
molecular weight (MW > 850 Da) and molecules that 

are hard to synthesize (Synthetic accessibility score 
>3.5). We pass the final results into the PyRx tool and 

retrieve the top 100 molecules by binding affinity 

score, which will be used to finetune the model; the 
binding simulation is done using the following vina 

search space parameters: 

• x: 51.3737 Å 

• y: 66.9738 Å 

• z: 59.6069 Å 

 
And center values of: 

 

• x : -25.9865 Å 

• y : 12.5886 Å 

• z : 59.1565 Å 

 

We repeated the above tasks until we got our final 

results. 
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Figure 1- Swiss cheese principle for filtering and selecting molecules 
 

The first step in our architecture is to train a 
generative model with the SMILES data representation 

of some existing pharmaceutical compounds, which 

serves as our base model. In order to generate a 
sequence, the model will be alimented in a first step 

with the BoS token (Beginning of Sequence) and will 
then produce a probability distribution over all the set 

of possible tokens at each time until the model predicts 

the EoS (End of Sequence). In order to alleviate the 
problem of bias exposure, we train our model through 

maximum likelihood estimation (eq.). 
M LE =. Pθ (xt |X1:t −1) (25) 

The loss function is calculated as the categorical cross-
entropy between the actual value of the next token 

and the predicted one and then is averaged through all 

the predictions (eq. 26) [8] [9]. 
 

RESULTS  

We evaluated both of our models (vanilla-LSTM and 
BN-LSTM) in order to choose the best model for our 

SMILES generations. Each model was constituted of 2 

LSTM cells and one fully connected layer; we 
proceeded to remove the dropout from the BN-LSTM 

model; we conclude with the following results shown in 
figures 
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F I G U R E 2 Vanilla model accuracy (a) and training loss(b) evolution per epoch. The produced model resulted in a validity 

value of 43.10%, a uniqueness value of 99.88%, and an originality value of 99.42% within the first generated set. We 

observe that the validation loss is lower than the training loss. This behavior of the model is due to the fact that the 
dropout regularization is applied during training but not during testing. This implies that our model is underfitting and 

is not able to perform well on the training set. Therefore, such behavior explains why the model couldn’t produce a 

higher validity value. 
 

 

 

 

F I G U R E 3 Batch Normalization model accuracy (a) and training loss(b) evolution per epoch. The produced model 

resulted in a validity value of 90.98%, a uniqueness value of 98.36%, and an originality value of 90.37% within the 
first generated set. 
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We retrain our model, using this time an orthogonal initialization for all the weights in our model instead of the 
normal weight initialization. We have noticed a slight improvement on both the loss and accuracy of the model, as 

well as an increase on the validity of the generated set. The figure below(fig.9) depicts the result acquired. 
 

F I G U R E 4 Batch Normalization model with orthogonal weight initialization accuracy (a) and training loss(b) evolution 

per epoch. The produced model resulted in a validity value of 92.76%, a uniqueness value of 98.16%, and an originality 

value of 90.63% within the first generated set. 

When calculating the average binding energy of the top 100 candidates of each generation, we can see that we’re 

getting better results in terms of binding affinity score with Mpr o (6LU7) within each generation (Fig.10) 

 

 

 
 

F I G U R E 5 Binding energy evolution of the top 100 /gen. The figure shows that with each generation, we get new 
generated molecules that achieves a better(smaller) binding affinity score with 6LU7. 

 

Even though, as shown in the figure above, we got 
lower binding affinity scores within each generation, 

we stopped all the iterations in generation 18 as all the 
newly generated molecules has undesirable 

pharmacokinetic properties such as high molecular 
weight and high lipophilicity, which can lead in general 

to a lower solubility, high turnover, low absorption and 

can also lead in some cases to toxicity and metabolic 
clearance [35]. Below we describe some of the 

generated molecules that had interesting assets; Binding 
energy with 6LU7, Synthetic Accessibility score, and 

ADME Properties (Molecular Weight, LogP, H-Bond donor, 

H-bond acceptor). Many ADME Properties were calculated 
using the SwissADME web tool [36] 
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F I G U R E 6 Average Molecular Weight and logP of the top 100mols/gen. The figure shows that the top 100 of the 

generated molecules becomes more and more heavier in terms of Molecular weight(a) and increases also in the value of 
the calculated logp (b) within each generation. 

 

 
Table 1: ADME properties & metrics of the generated molecules 

 

 

Molecule Mol 
Weight 

Log P H-Bond 
Donor 

H-Bond 
Acceptor 

Binding energy 
(Kcal/mol) 

Synthetic 
Accessibility Score 

QED 

Mol 1 339.082 3.17 3 3 -9.6 2.828 0.858 

Mol 2 304.132 3.287 2 4 -9.3 1.831 0.959 

Mol 3 500.165 6.463 2 4 -10.5 2.613 0.214 

Mol 4 509.174 6.324 3 3 -11.0 2.402 0.195 

Mol 5 512.16 4.509 3 6 -10.4 2.581 0.173 

Mol 6 530.15 4.648 3 6 -10.5 2.758 0.147 

Mol 7 688.209 10.075 2 4 -12.2 2.962 0.051 

Mol 8 810.196 13.079 2 4 -13.2 3.213 0.04 

Azithromycin 748.509 1.901 5 14 -7.6 nan 0.039 

Remdisivir 602.225 2.312 4 13 -5.1 nan 0.059 

Ritonavir 720.313 5.905 4 9 -5.1 nan 0.046 

Hidroxy-

Chloroquine 

335.176 3.783 2 4 -6.2 nan 0.918 

Chloroquine 319.182 4.811 1 3 -6.7 nan 0.942 

Nitazoxanide 307.026 2.229 1 7 -7.9 nan 0.83 
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F I G U R E 7 structure of the generated molecules. a) depicts the molecules described in the table. Two as mol1, b) 
depicts the molecules described in the table. Two as mol2, c) depicts the molecules described in the table. Two as mol3 

d) depicts the molecules described in the table. Two as mol4 e) depicts the molecules described in the table. Two as 

mol5, f) depicts the molecules described in the table. Two as mol6, g) depicts the molecules described in the table. 2 
as mol7, h) depicts the molecules described in the table. Two as mol8. All the 2-D structure rendering was carried out 

using the PubChem sketcher web tool [12]. 
 

The table below shows the SMILES representations of the generated molecules described in Table.2 

   Molecule SMILES  

Mol 1  N=C(O)c1ccc(-c2n[nH] c(=O) c3c2-c2ccc(F)cc2C3) c(F)c1 

Mol 2 Cc1cc (C (=O) Nc2ccc (-c3ccccc3) cc2) nc (N) n1 

Mol 3 Cc1cc2ccccc2c(C(=O)NC(=O)c2ccc(-c3cnc4[nH]cc(-c5ccccc5)c4c3)c(F)c2)n1 

Mol 4 NC(=O)c1cc(C(=O)NC(=O)c2cccc(-c3ccc4[nH]cc(-c5ccccc5)c4c3)c2)c2ccccc2c1 

Mol 5 NC(=O)c1cc(C(=O)NC(=O)c2ccc(-c3cnc4[nH]nc(-c5ccccc5)c4c3)cc2)c2ccccc2n1 

Mol 6 NC(=O)c1cc(C(=O)NC(=O)c2ccc(-c3cnc4[nH]nc(-

c5ccccc5)c4n3)c(F)c2)c2ccccc2c1 

Mol 7 Cc1ccc(-c2cccc(F)c2)cc1-c1cc(C(=O)NC(=O)c2ccc(-c3cnc4[nH]cc(-
c5ccccc5)c4c3)c(F)c2)c2ccc(F)cc2n1 

Mol 8 Cc1cc(C)c(-c2cc(C(=O)NC(=O)c3ccc(-c4cnc5[nH]cc(-

c6ccccc6)c5c4)c(F)c3)c3cc(Cl)c(Cl)cc3n2)cc1-c1cccc(-c2ccccc2)c1 

  

 Table 2: SMILES representation of the generated molecules 

 

The figures below depict the 2-D structures of the protein-ligand interaction between the 

generated ligands and the Mpr o. These figures were generated using PyMOL [13] and LigPlot+ [14]. 
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F I G U R E 8 The figure shows the 2-D structure of the protein-ligand interaction between the mol1 (a), mol2 (b),  and 

mol3 (c) described in Table 2 and Mpr o  (6LU7). 

 

F I G U R E 9 The figure shows the 2-D structure of the protein-ligand interaction between the mol4(a) and mol5(b), 

mol6(c) described in Table 2 and Mpr o (6LU7). 
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F I G U R E 10 The figure shows the 2-D structure of the protein-ligand interaction between the mol7(a) and mol8(b) 

described in Table 2 and Mpr o (6LU7). 

 
CONCLUSION 

In this work, we successfully produced a model 

capable of generating molecules that can inhibit SARS-
CoV-2 main protease, as shown in our simulation-based 

on deep, proactive transfer learning. We trained an 
LSTM architecture with SMILES representation of 

existing pharmaceutical compounds to produce our 

base model, which has a goal only to generate valid 
molecules. We proceeded afterward to fine-tune the 

model with the SMILES representation of the best 
molecules that met filtering criteria such as molecular 

weight, feasibility to synthesize, and most importantly, 
the binding affinity score with the main protease. 

Further tests, such as in-vitro and in-vivo tests, should 

be made to retrieve more insights and findings of the 
above molecular results. Within the results, we found a 

common and shared fragment in many molecules; 
although with our approach, we can’t grow molecules 

in more than one direction, this seems as a viable track 

to cover afterward. 
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