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1  
INTRODUCTION 

 On December 2019, the world entered a state 

of alarm and dismay with the outbreak of a severe acute 
respiratory syndrome coronavirus 2(SARS-CoV 2) from 

Hubei-China and has infected as of the 25th July 2022 
more than 575,412,277 people worldwide. This caused 

up to 6,403,465 deaths and the World Health 
Organization (WHO) declared on January 2020 a global 

health emergency due to the rate at how much the 

infection is spreading and the mortality rate that 
approaches 4.5 percent [32]. It is considered to be 

extremely costly to bring a new drug to the market in 
terms of time and financial investment which is 

respectively on average around 10 years and 1 billion 

dollars. Drug discovery alone can take up to 3 years 

which is a time we cannot accept in the context of a 

global pandemic. Artificial intelligence methodologies, 
proved to be very resourceful for solving many tasks 

specially when it comes to computer vision, natural 
language processing, solving core problems in biology 

such as a gigantic leap in the prediction of the 3-D 
shapes of protein structures based on its amino-acids 

sequences[19] [36] and also using GAN architectures to 

search for new molecules[6]. Our main goal is to 
harvest the power of these methodologies in order to 

generate new molecules that can potentially treat the 
disease and thus contributing in reducing the time for 

the drug discovery process. The genetic code is 
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oftentimes called the genetic blueprint as it contains all 

instructions that a cell would need to survive, 
proliferate, and perform its role in the organism. These 

instructions are found in the form of DNA, for them to 

become realized, they pass through two steps which are 
transcription and translation. In the flow of information, 

the first step is to transcribe the double-stranded DNA 
(dsDNA) template to yield a single-stranded RNA 

(ssRNA) molecule, called Messenger RNA (mRNA). This 

mRNA will then carry the transcribed instruction from 
within the Nucleus into the Cytosol where it will be 

Translated into Protein Product. 
Transcription Process: The Enzyme RNA 

Polymerase-II (RNA pol-II) is required for transcription 
to occur, as it binds to the Template DNA strand and 

catalyzes the formation of a complementary mRNA. In 

Eukaryotic Cells, there are three main different types of 
RNA Polymerase that exist. RNA pol I transcribes the 

genes that encode Ribosomal RNAs (rRNAs). RNA pol II 

transcribes mRNA, which will be translated, yielding 
protein products. RNA pol III transcribes the genes for 

Transfer RNAs which are essential in the translation 
process. 

Translation Process: As discussed above, the 

product of Transcription is the production of a single 
stranded mRNA copy of the gene, which next must be 

translated into a protein molecule. Translation is the 
process which by the genetic code is translated into a 

sequence of Amino Acids, which consequently form 
proteins.[28]  

 
Figure  1: Gene transcription and translation.[18] 

 
  The lifecycle of the virus inside of an infected 

host is no different than the processes described above 
and thus one could stop the activity of the virus by 

stopping the main processes for its reproduction which 

are translation and replication. The novel SARS-CoV-2 
possesses an enzyme called Main Protease (Mpro) 

which cuts the Polyproteins translated from viral RNA to 
yield function viral proteins necessary for viral 

replication. Currently, there’s increasing evidence that 
some of the observed mutations may be capable of 

changing the Antigenic Phenotype of SARS-CoV-2, this 

consequently would affect Immune Recognition.[17] 
This implies that Vaccination alone is not a valid 

solution. It has been proposed in a previous study that 
the substrate-recognition pocket of Mpro is highly 
conserved among all Coronarviruses.[45] Making 𝑀𝑝𝑟𝑜 

one of the most suitable options for pharmacological 

intervention. It is, therefore, of the utmost importance 

to specifically target and inhibit this enzyme, which in 
turn, will block viral replication. Furthermore to justify 

our position, currently, there are no known human 
proteases with similar cleavage specificity as that of 
𝑀𝑝𝑟𝑜 , making toxicity due to 𝑀𝑝𝑟𝑜  Inhibitors to be 

unlikely.[47] To this end, we decided to study the 

Ligand Docking on the Main Protease of the virus as it 

is a sensible approach to halt the activities of the 
virus[20]. We decided to approach this study via an In-

silico screening technique, using the PyRx tool[10] that 

uses Autodock vina as a screening method[40]. In our 
work, we opted for using LSTM architectures to create 

our generative model, in order to produce those ligands. 
The first step is to create a base model trained on the 

SMILES of existing pharmaceutical compounds and can 
generate valid and new molecules. The model will be 

then fine-tuned after each generation with molecules 

based on their binding affinity score with the main 
protease of the covid-19 (6LU7) and based on their 

synthetic accessibility and molecular weight. We choose 
the SMILES (Simplified Molecular Input Line Entry 

System) digital encoding as the main type of data that 

would represent molecules since that they represent 
and describe atoms and their bonds quite well and in a 

text line format that can be easily loaded to a generative 
recurrent network which has proved to be adequate and 

efficient in those kinds of tasks. The present document 

is divided into three main parts. The first section 
describes the problem including all the elements that 

we used, it also states the choice of the data type, data 
sources alongside the data modeling and generation. 
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The second part focuses on the related works done 

within the same context in the field of the in-silico 
Protein-Ligand docking study, and also presents the 

data that we used within our work for the ligands and 

the macromolecules and also presents a dive-in into 
different methodologies followed, while in the third 

part, we present our results regarding the docking of 
the generated molecules with the Mpro (6LU7), their 

synthetic feasibility score, and their ADME properties. 

We conclude this work with a final part discussing the 
work as a whole and some eventual future works to take 

into consideration  
 

2  METHODS 
2.1  Related work 

 A review of the state of the art on molecule 

generation using artificial intelligence has been 
conducted by Daniel C.Elton in 2019 [12] presents 

several approaches to generate molecules using RNNs 
(Recurrent Neural Networks), AutoEncoders and GANs 

( Generative Adversarial Networks). It also presents the 

different metrics (Diversity, Novelty, Stability, 
Synthesizability, Non-triviality, Good properties) to take 

into consideration in order to get a broader sense on 
the produced molecules. Moreover, these metrics can 

give us an overview on the quality of the generated 
molecules. They can also work as reward functions. 

Another study conducted by Esben Jannik Bjerrum in 

2017[5] (Bjerrum 2017) focused on molecule 
generation for data augmentation using Variational 

AutoEncoders. Even though the studies covered many 
interesting parts, the scope that the study covered 

differs from our scope, as our goal doesn’t only stop at 

generating valid molecules, but also to generate specific 
molecules that can inhibit a protein. A study was done 

by Anvita Gupta, Alex T. Müller et al. in 2017[16] in 

which they used Recurrent Neural Networks (RNNs) to 
generate molecules and fine-tuning in order to generate 

specific target molecules that would achieve a similarity 

score close to some known drugs. Many aspects of this 
study were beneficial to the success of ours 

nevertheless some aspects differed from our goal and 
the approach we used. We used the same techniques 

for the protein-ligand docking study and introduced 

other generation metrics such as synthetic feasibility 
that can be very beneficial since the current use case is 

to produce new molecules. Another interesting study 
was led by Bowen Tang et al. (AI-aided design of novel 

targeted covalent inhibitors against SARS-CoV-2) [39] 
in which they leveraged the properties of advanced 

Deep Q learning to generate potential lead compounds 

that can target the SARS-COV-2 protease ( mainly 
3CLpro and 𝑀𝑝𝑟𝑜 ) using the fragment drug-design 

(ADQN-FBDD).  
2.2  Ligands 

 The SMILES digital encoding offers a good 
representation of molecules since it can accurately 

describe the atoms and their bonds with a line text 

string which can serve afterward as input for Recurrent 
Neural Network. When choosing a molecule digital 

encoding three important properties should be taken 
into consideration[12] :   

    • Uniqueness: each Molecule structure 
has a unique represen-tation  

    • Invertibility: each representation is 

associated with only one Molecule  
    • Representation type: the 

representation can be either a sequence or a tensor  

  
 

 

 
 

  
  

 
 

 

 
 

 
 

 

 
Table 1 : depicting molecules and some of their digital representation. 

  
 

The choice of the canonical SMILES form over 
the regular SMILES representation has been done to 

ensure the bijectivity between the two sets of molecules 

and their sequence representation by ensuring 
uniqueness, each molecule is associated with one 

Representation 

technique 

Is unique Is invertible Type 

SMILES   No   Yes   Sequence  

Canonical SMILES   Yes   Yes   Sequence  

InChI Keys   Yes   Yes   Sequence  

Tensor Field 

Network  

 No   No   Tensor  

MACC Keys   No   Yes   Sequence  

Chemception 

images  

 Yes   Yes   Tensor  

Tensors   No   Yes   Tensor  
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representation and invertibility, each representation is 

associated with a single molecule. 

 

 
Figure  2: Relation between molecules and their SMILES representation. 

  

Even though the InChI technique has proved to 
be very efficient with database indexing, Canonical 

SMILES offers a better representation when it comes to 
the different bond types and can be better suited for 

the model. To this end, we used SMILES data retrieved 

from the ChemBL databases[30](Mendez et al.,2019). 
The aggregation of these SMILES data sources gave us 

more than 600,000 SMILES. We also removed all the 
duplicates to avoid generating more redundant SMILES 

by our model, resulting in a lower uniqueness value. 
Finally, we removed all the long SMILES which would 

normally represent long molecules. We ended up with a 

training dataset that contains around 400,000 entry. 
 

2.3  Macromolecule 
 The Viral Protease is a common target for the 

development of Antiviral Drugs, as indicated by several 

studies on HIV, Hepatitis C Virus, and Ebola 
Virus.[44][11][31](Lv et al.,2015; De leuw et al.,2017 ; 
Nishimura et al.,2015). Regarding the Covid-19, 𝑀𝑝𝑟𝑜 

is the Main Viral Protease, and it has been found to be 

conserved among the Coronaviruses (Coronaviridæ). 
Vaccination alone is not a valid solution since the viruses 

tends to reemerge and spike mutations do occur[27](Li 
et al.,2020). In the light of recent event, we can witness 

this happening in the United Kingdom, where a new 

variant of the SARS-CoV-2 has emerged, the variant is 
referred to as SARS-CoV-2 VUI 202012/01 (Variant 

Under Investigation, year 2020, month 12, variant 01) 
and is defined by multiple spike proteins mutations 

(deletion 69-70, deletion 144, N501Y, A570D, D614G, 
P681H,T716I, S982A, D1118H)[14](European Centre 

for Disease Prevention and Control, 2020) which can 

make a lot of vaccines passing clinical trials obsolete, 
this begs for the development of Antiviral medications 

that can inhibit a conserved target, we argue that Mpro 
is a suitable candidate and is a good choice to choose 

as our Macromolecule with which we will be performing 

our ligands docking simulation, since that it’s considered 
to be an attractive drug target as it plays a key role for 

the replication of the Coronaviridæ[38][48], following 
the same rationale, Mpro would be a suitable target for 

inhibition. 
 

 
Figure  3: The crystal structure of COVID-19 main protease in complex with an inhibitor N3. 
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The .pdb (protein data bank) file, retrieved 

from the RCSB website[3], offers a digital 

representation of the protease that can be uploaded to 
a docking simulation tool representing the structure of 
the main protease ( 𝑀𝑝𝑟𝑜 ) was loaded as a 

macromolecule to PyRx, with which we will simulate the 

docking of the newly generated molecule. Each 
simulation produces a metric called binding affinity 

score also called the binding energy. Some already 

known drugs passing clinical trials such as 
Hydroxychloroquine gave a score of -5.3 Kcal/mol. 

 
2.4  Pre-processing 

 A first step into preprocessing the SMILES data 
was to create a tokenizing function that would convert 

a SMILES string into a one hot-encoded vector, from a 

set of all possible tokens, that will be fed to neural 
network. And another function that would decode the 

one hot-encoded vector to its corresponding SMILES for 
further processing. Most of the utility functions were 

implemented using the RDKit library on Python[23] and 

their main purpose was to :   
    • Converting SMILES to mols (and 

eventually determining whether the SMILES is valid or 
not).  

    • Converting mols to SMILES (mainly to 
ensure that we’d use only canonical SMILES).  

    • Calculating molecular weight.  

    • Calculate number of atoms, number of 
Spiros, number of Chiral centers, number of 

bridgeheads number of macrocycles in order to deduce 
the synthetic feasibility score.  

    • Writing Results to a chemical table file 

(.sdf) that’ll be passed to PyRx .   
2.5  Prerequisites 

 2.5.1  Batch Normalisation 

 Let’s consider the input of a given layer in a 

deep neural network with dimention n : 

 

 𝑢 = (𝑢(1), . . . , 𝑢(𝑖), . . . , 𝑢(𝑛))
 (1) 
 Let’s denote ℬ a mini-batch of size m.  

 ℬ = {𝑢1, . . . , 𝑢𝑚}
 (2) 
 The empirical values for the mean and variance of ℬ 

are calculated as follows :  

 𝜇ℬ =
1

𝑚
Σ𝑖−1
𝑚 𝑥𝑖

 (3) 

  

 𝜎ℬ = √
1

𝑚
Σ𝑖−1
𝑚 (𝑥𝑖 − 𝜇ℬ)

2

 (4) 

 We can normalize each dimension 𝑢(𝑘) as follows :  

 𝑢𝑖
(𝑘)

=
𝑢𝑖
(𝑘)

−𝜇ℬ

√𝜎ℬ
(𝑘)2

+𝜖

 (5) 
 Where 𝑘 ∈ {1, 𝑛}  and 𝑖 ∈ {1,𝑚}  and 𝜖  is a small 

arbitrary positive constant added in the denominator to 

ensure numerical stability. 

The previous normalization of 𝑢𝑖
(𝑘)

 has the 

effect to reduce its representation ability. Batch 
Normalization restores the network representation 

power by introducing additional parameters 𝛾(𝑘)  and 

𝛽(𝑘) that are subsequently learned during the training 

phase. 
The Batch Normalization transformation is 

defined by :  

 𝐵𝑁𝛾(𝑘),𝛽(𝑘)(𝑢
(𝑘)) = 𝛾(𝑘)𝑢𝑖

(𝑘)
+ 𝛽(𝑘)

 (6) 

 Where 𝑢
(𝑘)

 remains internal to the current layer and 

𝐵𝑁𝛾(𝑘),𝛽(𝑘)(𝑢
(𝑘)) is passed to the next layer. 

 
2.5.2  LSTM 

 Our goal is to generate SMILES that fits our 
needs, this can be done through different techniques. 

RNN with LSTMs has shown great success for text 

generation. Even though LSTM was first invented in 
1997, training LSTMs with MLE still outperforms recent 

methods in text generation like Scheduling Sampling 
(SS) and it is also as good as some recent and complex 

architectures such as SeqGan [46]. LSTMs and its 
variants are known to alleviate the vanishing and 

exploding gradient problems, due to a memory cell they 

contain. In the context of SMILES generation, these 

models typically fails due to the errors that accumulates 
with each recursion[12] and can eventually lead to a 

poor quality of the generated sequences. This 
phenomenon is known as the bias exposure 

problem[34][2]. To solve this issue we will train our 

model following the maximum likelihood estimation. 
Doing so, our model opt to choose the token with the 

highest probability. However, in the sampling phase we 
update our model using temperature-decoding method, 

which shrink or enlarge probabilities to ensure more 
flexibility in the search area of the best token and to 

produce distinct and diverse generations while sampling 

our SMILES. 
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Figure  4: LSTM cell representation[33] 

  The LSTM cell an be represented by :  
 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝐶𝑡−1 + 𝑏𝑖) (7) 

  

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝐶𝑡−1 + 𝑏𝑓) (8) 

  
 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (9) 

  
 𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (10) 

  
 ℎ𝑡 = 𝑜𝑡tanh(𝑐𝑡) (11) 

 

 
2.5.3  Batch Normalization applied to LSTM  

 A common phenomenon that occurs within 
machine learning is the covariate shift[37][8], which 

changes the distribution of the inputs presented. In 

order to remediate to this issue we decide to include 
batch normalization layers, which is an approach for 

network reparametrization that standardizes the 
outputs using estimations of their means and standard 

deviations. We apply a batch normalization variant as in 
from input-to-hidden and hidden-to-hidden layers. So 

our LSTM model will be defined as follows : 

 
 𝑖̂𝑡 = 𝜎(𝐵𝑁(𝑊𝑥𝑖𝑥𝑡) + 𝐵𝑁(𝑊ℎ𝑖ℎ𝑡−1) +𝑊𝑐𝑖𝐶𝑡−1 +

𝑏𝑖) (12) 

  

 𝑓𝑡 = 𝜎(𝐵𝑁(𝑊𝑥𝑓𝑥𝑡) + 𝐵𝑁(𝑊ℎ𝑓ℎ𝑡−1) +𝑊𝑐𝑓𝐶𝑡−1 +

𝑏𝑓) (13) 

  

 �̂�𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡tanh(𝐵𝑁(𝑊𝑥𝑐𝑥𝑡) +
𝐵𝑁(𝑊ℎ𝑐ℎ𝑡−1) + 𝑏𝑐) (14) 

  
 �̂�𝑡 = 𝜎(𝐵𝑁(𝑊𝑥𝑜𝑥𝑡) + 𝐵𝑁(𝑊ℎ𝑜ℎ𝑡−1) +𝑊𝑐𝑜𝑐𝑡 +

𝑏𝑜) (15) 

  
 ℎ𝑡 = �̂�𝑡tanh(�̂�𝑡)

 (16)  

2.6  Proposed approach 
 2.6.1  Generations and transfer learning 

 The figure below(Fig.5) depicts the main 
architecture that we followed all along our work.  
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tw]  Figure  5: Main architecture explaining the adopted approach. 

  

We generate with this model a batch of 
molecules that will be filtered according to the swiss 

cheese principle(Fig.6); We remove duplicate molecules 
(SMILES sequence that can be generated twice or might 

be the same after the canonical form conversion). We 

also remove non-valid and erroneous molecules 
(molecules that cannot exist and don’t obey to laws of 

physics). After that, we eliminate molecules that have a 
great molecular weight(MW > 850 Da) and molecules 

that are hard to synthesize (Synthetic accessibility score 
>3.5). We pass the final results into the PyRx tool and 

retrieve the top 100 molecules by binding affinity score 

which will be used to finetune the model, the binding 
simulation is done using the following vina search space 
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parameters :   

    • x : 51.3737 Å  
    • y : 66.9738 Å  

    • z : 59.6069 Å  

 And center values of :   

    • x : -25.9865 Å  

    • y : 12.5886 Å  
    • z : 59.1565 Å  

We repeated the above tasks until we got our final 

results. 
 

   
  

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
Figure  6: Swiss cheese principle for filtering and selecting molecules 

 
 To give some semantics into the generated molecules 

we implement many metrics[12] such as : 

    • Uniqueness : 
 Uniqueness is a metric that describes the 

number of unique SMILES within one generation batch. 
And is described as follows:  

 𝑅𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 =
|𝑠𝑒𝑡(𝐴)|

|𝐴|
, 𝑅𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 ∈ (0,1]

 (17) 

 where : set(A) is the set of unique SMILES within A.  
    • Validity : 

 Validity is a metric that describes the number 

of valid molecules on the generated set.  

 𝑅𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 =
|𝑉𝑎𝑙𝑖𝑑(𝐴)|

|𝐴|
, 𝑅𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 ∈ [0,1]

 (18) 

 where : A is the set of generated molecules and 

valid(A) is the set of valid SMILES within A.  
    • Originality or novelty : 

 Originality is a metric that can describe if the 

model is generating new molecules and not only 
reproducing the molecules he has seen on the training 

set.  

 𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 1 −
|𝐺(𝐴)∩𝑇(𝐴)|

|𝑇(𝐴)|
, 𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦 ∈ [0,1]

 (19) 

 where : G(A) is the set of the generated molecules. 

T(A) is the training set of the model.  
    • Synthetic feasibility : 

 Our main aim is to generate new and non-
existing molecules. Thus, we need not only to generate 
molecules that can bind easily to 𝑀𝑝𝑟𝑜  but also 

molecules that would be synthetically accessible in 

order to deliver the molecule quickly to the market. To 

this end, we introduced synthetic feasibility which is a 
metric based on the Synthetic accessibility score[13], 

that represents and estimates the synthetic feasibility of 
a given molecule and produces an output between 1 

and 10 ( 1 being the easiest to make and 10 the 

hardest) this score takes into consideration various 
penalties and metrics such as :  
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 𝑆𝑖𝑧𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑁𝑎
1.005 − 𝑁𝑎

 (20) 
  

 𝑆𝑡𝑒𝑟𝑒𝑜𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = log10(𝑁𝑐 + 1)
 (21) 
  

 𝑆𝑝𝑖𝑟𝑜𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = log10(𝑁𝑠 + 1)
 (22) 

  
 𝐵𝑟𝑖𝑑𝑔𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = log10(𝑁𝐵 + 1)

 (23) 

 

 

 𝑀𝑎𝑐𝑟𝑜𝑐𝑦𝑐𝑙𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = {
log10(2), ifNM > 0,

0, ifNM = 0.
 (24) 
 

 
 

Such as :  
𝑁𝑎 : Number of atoms  

𝑁𝐶 : Number of Chiral Centers  

𝑁𝑆 : Number of Spiros  

𝑁𝐵: Number of Bridge heads  

𝑁𝑀: Number of Macrocycles  

 
We opted towards using fine-tuning as a 

method for transfer learning to produce with each new 

generation molecules similar to the ones that achieved 
good binding affinity scores in the previous generations. 

To this end, we pick the top 100 molecules with each 
generation and add a smaller sample generated from 

the base model (gen 0) so that it promotes diversity. As 

the model is retrained with similar data, it starts to 
produce a molecule sample with a higher similarity 

score. Thus, the validity of the model starts to increase, 
and the uniqueness starts to decrease. We also increase 

the sample size within each generation in order to 
maintain a representative sample size of the pre-

processed molecules.  

2.6.2  Training phase 
 The first step in our architecture is to train a 

generative model with the SMILES data representation 

of some existing pharmaceutical compounds, which 
serves as our base model. In order to generate a 

sequence, the model will be alimented in a first step 

with the BoS token (Beginning of Sequence) and will 
then produce a probability distribution over all the set 

of possible tokens at each time until the model predicts 
the EoS (End of Sequence). In order to alleviate the 

problem of bias exposure we train our model through 

maximum likelihood estimation (eq.25).  
 𝑀𝐿𝐸 = ∏𝑡 𝑃𝜃(𝑥𝑡|𝑋1:𝑡−1)

 (25) 
 The loss function is calculated as the categorical cross-

entropy between the actual value of the next token and 

the predicted one and then is averaged through all the 
predictions (eq.26)[16][21].  

 𝐿 = −Σ𝑋∈𝛾Σ𝑡=1
𝑇 𝑙𝑜𝑔𝑃𝜃(𝑥𝑡|𝑋1:𝑡−1)

 (26) 

 Since the MLE optimization tends to capture only the 

peaks of the distribution and neglects the tails, we 
employed a multinomial sampler with a sampling 

temperature in order to rescale the distributions away 
from the peaks. It is done as follows (eq.27):  

 𝑃𝑖
𝑛𝑒𝑤 =

exp(
𝑃𝑖
𝑇
)

Σ𝑗exp(
𝑃𝑖
𝑇
)

 (27) 

 where T is the sampling temperature. When 

generating with low values of T, the generated 
molecules are usually not diverse and close to molecules 

seen on the training set. Whereas higher values of T 
can lead to a new diverse set but can also cause a low 

validity rate on the generated set. Nevertheless, it is 

more probable to produce erroneous and nonsensical 
results when selecting from a wider space.  

3  Experiments 
 We evaluated both of our models (vanilla-

LSTM and BN-LSTM) in order to choose the best model 

for our SMILES generations. Each model was 
constituted of 2 LSTM cells and 1 fully connected layer, 

we proceed to remove the dropout from the BN-LSTM 
model, we conclude to the following results shown in 

figure 7 and 8.  
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Figure  7: Vanilla model accuracy (a) and training loss(b) evolution per epoch. The produced model 

resulted in a validity value of 43.10%, a uniqueness value of 99.88% and an originality value of 99.42% 
within the first generated set. We observe that the validation loss is lower than the training loss. This 

behavior of the model is due to the fact that the dropout regularization is applied during training but not 

during testing. This implies that our model is underfitting and is not able to perform well on the training 
set. Therefore, such behavior explains why the model couldn’t produce a higher validity value.  

   
  

  
Figure  8: Batch Normalization model accuracy (a) and training loss(b) evolution per epoch. The 

produced model resulted in a validity value of 90.98%, a uniqueness value of 98.36% and an originality 
value of 90.37% within the first generated set. 

 
 

  
We retrain our model, using this time an 

orthogonal initialization for all the weights in our model, 

instead of the normal weight initialization. We have 
noticed a slight improvement on both the loss and 

accuracy of the model, as well as an increase on the 

validity of the generated set. The figure below(fig.9) 

depicts the result acquired.  
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Figure  9: Batch Normalization model with orthogonal weight initialization accuracy (a) and training 

loss(b) evolution per epoch. The produced model resulted in a validity value of 92.76%, a uniqueness 

value of 98.16% and an originality value of 90.63% within the first generated set. 
  

When calculating the average binding energy of the top 100 candidates of each generation we can see that 
we’re getting better results in terms of binding affinity score with 𝑀𝑝𝑟𝑜 (6LU7) within each generation (Fig.10).  

   
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
Figure  10: Binding energy evolution of the top 100 /gen.The figure shows that with each generation we 

get new generated molecules that achieves a better(smaller) binding affinity score with 6LU7. 

 
  

Even though, as shown in the figure above, we got 
lower binding affinity scores within each generation, we 

stopped all the iterations in generation 18 as all the 
newly generated molecules has undesirable 

pharmacokinetic properties such as high molecular 

weight, high lipophilicity (Fig.11) which can lead in 

general to a lower solubility, high turnover, low 
absorption and can also lead in some cases to toxicity 

and metabolic clearance [41]. Below we describe some 
of the generated molecules that had interesting assets; 

Binding energy with 6LU7, Synthetic Accessibility score 

and ADME Properties (Molecular Weight, LogP, H-Bond 
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donor, H-bond acceptor) many ADME Properties were calculated using the SwissADME web-tool [9].  

   
Figure  11: Average Molecular Weight and logP of the top 100mols/gen. The figure shows that the top 100 

of the generated molecules becomes more and more heavier in terms of Molecular weight(a) and increases also in the 

value of the calculated logp (b) within each generation. 

 The table below (table.2) presents the 

different molecular properties of the generated 

molecules and some existing pharmaceutical 
compounds that are being evaluated to treat covid-19 

such as Azythromicine [15], Remdisivir [43], 
Nitazoxanide [7], Lopinavir [29], Hydroxycholoroquine 

[26] and Chloroquine [42]. We present some of the 

relevant metrics for our study like the synthetic 

accessibility score and binding energy with 𝑀𝑝𝑟𝑜  and 

also some metrics relative to drug likeness and 
desirability like MW, cLogP, HBD, HBA mentioned on the 

Lipinski rule of 5, also called ro5 [25][1], and also QED 

or quantitative estimate of drug-likeness [4] which is a 
metric that reflects the underlying distribution of 

molecular properties relevant to drug likeness. 

 

   

Molecule Mol 

Weight 

LogP H-Bond 

Donor 

H-Bond 

Acceptor 

Binding 

Energy 

(Kcal/mol) 

Synthetic 

Accessibility 

Score 

QED 

Mol 1 339.082 3.17 3 3 -9.6 2.828 0.858   

Mol 2 304.132 3.287 2 4 -9.3 1.831 0.959   

Mol 3 500.165 6.463 2 4 -10.5 2.613 0.214   

Mol 4 509.174 6.324 3 3 -11.0 2.402 0.195   

Mol 5 512.16 4.509 3 6 -10.4 2.581 0.173   

Mol 6 530.15 4.648 3 6 -10.5 2.758 0.147   

Mol 7 688.209 10.075 2 4 -12.2 2.962 0.051   

Mol 8 810.196 13.079 2 4 -13.2 3.213 0.04   

Azithromycin 748.509 1.901 5 14 -7.6 nan 0.039   

Remdisivir 602.225 2.312 4 13 -5.1 nan 0.059   

Ritonavir 720.313 5.905 4 9 -5.1 nan 0.046   

Hidroxy-

Chloroquine 

335.176 3.783 2 4 -6.2 nan 0.918   

Chloroquine 319.182 4.811 1 3 -6.7 nan 0.942   

Nitazoxanide 307.026 2.229 1 7 -7.9 nan 0.83   

Table 2: ADME properties & metrics of the generated molecules 
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The figure below(Fig.12) depicts the 2-D structure of the generated molecules described in Table 2. 

 

  
Figure  12: 2-D structure of the generated molecules. a) depicts the molecules described in table.2 as mol1, b) 

depicts the molecules described in table.2 as mol2, c) depicts the molecules described in table.2 as mol3 d) depicts the 

molecules described in table.2 as mol4 e) depicts the molecules described in table.2 as mol5, f) depicts the molecules 
described in table.2 as mol6, g) depicts the molecules described in table.2 as mol7 , h) depicts the molecules described 

in table.2 as mol8. All the 2-D structures rendering were carried out using the pubchem sketcher web tool [22]. 
 

The Table below shows the SMILES representations of the generated molecules described in Table.2 
 

Table 3 : SMILES representation of the generated molecules 

   

Molecule SMILES 

Mol 1 N=C(O)c1ccc(-c2n[nH]c(=O)c3c2-c2ccc(F)cc2C3)c(F)c1   

Mol 2 Cc1cc(C(=O)Nc2ccc(-c3ccccc3)cc2)nc(N)n1   

Mol 3 Cc1cc2ccccc2c(C(=O)NC(=O)c2ccc(-c3cnc4[nH]cc(-c5ccccc5)c4c3)c(F)c2)n1  

Mol 4 NC(=O)c1cc(C(=O)NC(=O)c2cccc(-c3ccc4[nH]cc(-c5ccccc5)c4c3)c2)c2ccccc2c1   

Mol 5 NC(=O)c1cc(C(=O)NC(=O)c2ccc(-c3cnc4[nH]nc(-c5ccccc5)c4c3)cc2)c2ccccc2n1   

Mol 6 NC(=O)c1cc(C(=O)NC(=O)c2ccc(-c3cnc4[nH]nc(-c5ccccc5)c4n3)c(F)c2)c2ccccc2c1   

Mol 7 Cc1ccc(-c2cccc(F)c2)cc1-c1cc(C(=O)NC(=O)c2ccc(-c3cnc4[nH]cc(-c5ccccc5)c4c3)c(F)c2)c2ccc(F)cc2n1   

Mol 8 Cc1cc(C)c(-c2cc(C(=O)NC(=O)c3ccc(-c4cnc5[nH]cc(-c6ccccc6)c5c4)c(F)c3)c3cc(Cl)c(Cl)cc3n2)cc1-

c1cccc(-c2ccccc2)c1 



 

 

World Bulletin of Public Health (WBPH)  
Available Online at: https://www.scholarexpress.net 
Volume-12, July 2022 
ISSN: 2749-3644 

 

 
146 

The figures below depicts the 2-D structures of the protein-ligand interaction between the generated ligands and the 
𝑀𝑝𝑟𝑜. These figures were generated using PyMOL[35] and LigPlot+[24].  

Figure  13:  The figure shows the 2-D structure of the protein-ligand interaction between the mol1(a), 

mol2(b) and mol3(c) described in Table 2 and 𝑴𝒑𝒓𝒐(6LU7). 

   
    

Figure  14: The figure shows the 2-D structure of the protein-ligand interaction between the mol4(a) 
and mol5(b), mol6(c) described in Table 2 and 𝑴𝒑𝒓𝒐(6LU7). 
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Figure  15: The figure shows the 2-D structure of the protein-ligand interaction between the mol7(a) 

and mol8(b) described in Table 2 and 𝑴𝒑𝒓𝒐(6LU7). 

  

 
4 CONCLUSION 

In this work we successfully produced a model 
capable of generating molecules that can inhibit SARS-

CoV-2 main protease as shown in our simulation based 

on a deep proactive transfer learning. We trained an 
LSTM architecture with SMILES representation of 

existing pharmaceutical compounds to produce our 
base model which has as a goal only to generate valid 

molecules. We proceeded afterward to fine-tune the 
model with the SMILES representation of the best 

molecules that met filtering criteria such as molecular 

weight, feasibility to synthesize, and most importantly 
the binding affinity score with the main protease. 

Further tests, such as in-vitro and in-vivo tests should 
be made to retrieve more insights and findings of the 

above molecular results. Within the results we found a 

common and shared fragment in many molecules 
although with our approach we can’t grow molecules in 

more than one direction this seems as a viable track to 
cover afterwards.  
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