

# PROJECTION OF HIV PREVALENCE AMONG INDIVIDUALS AGED 15-49 YEARS IN ESTONIA USING HOLT'S EXPONENTIAL SMOOTHING TECHNIQUE

### Dr. Smartson. P. NYONI<sup>1</sup>, Thabani NYONI<sup>2</sup>

<sup>1</sup>ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe <sup>2</sup>Independent Researcher & Health Economist, Harare, Zimbabwe

#### Abstract

This study uses annual time series data of HIV prevalence among individuals aged 15-49 years for Estonia from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes Holt's linear exponential smoothing model. The optimal values of smoothing constants a and  $\beta$  are 0.9 and 0.4 respectively based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will be constant around 0.8% throughout the out of sample period. Therefore, we encourage authorities to address major drivers of HIV spread among this age group.

#### Keyword (s): - Exponential smoothing, Forecasting, HIV prevalence

#### BACKGROUND

According to UNAIDS, approximately 37 million people were estimated to be living with HIV globally by the end of 2014, with 2 million new HIV infections in 2014. Over the period 2000–2014, new infections dropped by more than 33 percent from the 3.1 million (3.0– 3.3 million). Since 2006 the global number of AIDS-related deaths has been gradually declining, in 2014 AIDS still accounted for 1.2 million (980 000–1.6 million) deaths. The epidemic patterns i.e., the level, main transmission mode(s) of the virus, most vulnerable population groups, and AIDS-indicative diagnoses have varied across the different regions of the world, reflecting the diversity in HIV epidemiology. The first case of HIV in Estonia was diagnosed in 1988. By the end of 2014, the estimated number of people living with HIV (PLWHIV) was reported to be 8 993 (EHB, 2015). Estonia has witnessed a fast growing HIV epidemic among young people who inject drugs (PWID) with a rare HIV subtype CRF06\_cpx from the year 2000, reaching the highest diagnosis rate in the European Union of 105.3 per 100,000 population in 2001 (EHB, 2016; Adojaan *et al.* 2005; AIDS ECftEMo, 2002).The Estonian government has made significant progress in addressing the rapidly evolving epidemic and implemented several strategies such as demand creation for HIV testing services, implementation of needle exchange programs, and offering free of charge antiretroviral therapy drugs (WHO, 2011; Estonia, 2005). The rate of reported new HIV infections dropped and stabilized at 24.6/100,000 by the end of 2013 (EHB, 2016; Soodla *et al.* 2015).

The objective of this study is to model and forecast HIV sero-prevalence among the 15-49 years age group using Holt's linear method. We anticipate that the results of the study will reflect future trends of HIV prevalence among the 15-49 year age group and this expected to guide allocation of resources towards HIV prevention, treatment and care programs in the country.

### LITERATURE REVIEW

| Author(s)              | Objective (s)                                                                                                                                                                                                       | Methodology    | Main finding(s)                                                                                                                                                                                                                                                                    |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uusku¨la et al. (2023) | To cover recent (post-<br>2010) systematic<br>reviews on engagement<br>of PWID in sequential<br>stages of HIV care from<br>uptake, to achieving<br>viral suppression, and<br>to avoiding AIDS-<br>related mortality | Scoping Review | Data on engagement of<br>PWID into antiretroviral<br>therapy (ART) were<br>particularly scarce, but<br>generally indicated very<br>low engagement in<br>ART. Studies of<br>adherence and<br>achieving viral<br>suppression showed<br>varying results, with<br>PWID sometimes doing |



| as well as other p<br>groups. The seven<br>social, medical<br>psychiatric disabil<br>this population<br>significant trea<br>challenges and lea<br>a marked gap in<br>mortality bein<br>PWID and<br>population groups                                                                                                                                                                                                                                                                                                                                                                                                                                     | atient<br>ity of<br>and<br>ity in<br>poses<br>cment<br>ads to<br>AIDS<br>ween<br>other |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Kase et al. (2021)To<br>describe<br>changes<br>in<br>distribution<br>distribution<br>of<br>genotypes<br>(GT), and<br>HCV<br>treatment<br>with HIV over 15 years-Used data of subjects<br>included to the Estonian<br>HIV<br>Decomber 2015.<br>-compared<br>two time<br>periods—first, 1st of<br>January 2000 to 31st of<br>December 2008 when<br>the HIV epidemic was<br>mostly<br>spreading<br>among people who<br>inject drugs (PWID) and<br>second, 1st of January<br>2009 to<br>31st of<br>December 2015 when<br>HIV started to emerge<br>to<br>the general<br>populationThere is a decreat<br>HCV prevalence<br>remains high a<br>HIV positive PWID | ise in<br>out it<br>mong                                                               |
| Uusku "la et al. (2020)To show the feasibility<br>of using an integrated<br>prevention and care<br>continuum (PCC) model<br>as a complete and<br>improved tool for HIV<br>control measurement<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d that<br>lesive<br>HIV<br>and<br>asible<br>bi-<br>lships<br>ention                    |
| Miadzieles (2020)To evaluate HIV testing<br>in Estonian health care<br>system in 2018.Observational<br>retrospective<br>quantitative study of<br>the data from the<br>Estonian Health<br>Insurance Fund's<br>database of treatment<br>invoices. HIV testing<br>was evaluated based on<br>all treatment invoices in<br>2018 (n = 8.1 million)<br>(including insured and<br>not insured patients).Different specialtie<br>more than pr<br>care, although patients                                                                                                                                                                                          | s test<br>imary<br>tients<br>first<br>imary                                            |
| Rüütel et al. (2018) To assess missed observational The HIV testing r   opportunities for HIV retrospective study, we the 2 years before   testing among people collected data from the HIV                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate in<br>re an                                                                        |



|                              | newly diagnosed with<br>HIV.                                                                                                                                                                                                                         | Estonian Health Board<br>on new HIV cases in<br>people aged 16–49<br>years diagnosed in<br>2014–15 and from the<br>Estonian Health<br>Insurance Fund<br>database for treatment<br>invoices on their<br>contacts with<br>healthcare services in<br>the 2 years preceding<br>diagnosis.                                | low, even in the<br>presence of an HIV<br>indicator condition                                                                                                          |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ruutel et al. (2018)         | To assess indicator<br>condition (IC) guided<br>HIV testing in Estonia<br>from 2012–2015.                                                                                                                                                            | Used Estonian Health<br>Insurance Fund (EHIF)<br>data. EHIF is the core<br>purchaser of health<br>care services in Estonia,<br>covering health care<br>costs for insured people<br>(94% of the total<br>population).                                                                                                 | Data revealed that IC-<br>guided HIV testing<br>rates are low in Estonia.                                                                                              |
| Soodla et al. (2016)         | to estimate HIV<br>incidence in 2013                                                                                                                                                                                                                 | Demographic and<br>clinical data were<br>obtained from the<br>Estonian Health Board<br>and the Estonian HIV-<br>positive patient<br>database. Serum<br>samples were tested for<br>recent infection using<br>the LAg-avidity EIA<br>assay. HIV incidence<br>was estimated based on<br>previously published<br>methods | HIV incidence of 0.06%, corresponding to 642 new infections in 2013 among the non-<br>screened population. Incidence was highest (1.48%) among people who inject drugs |
| Kivimets & Uusküla<br>(2014) | To assess the potential<br>for HIV transmission in<br>Estonian prisons                                                                                                                                                                               | observational cohort<br>study                                                                                                                                                                                                                                                                                        | This analysis indicated<br>low risk of HIV<br>transmission in<br>Estonian prisons                                                                                      |
| Jolley et al. (2012)         | to examine risk factors<br>associated with HIV<br>prevalence among<br>PWID in Central and<br>Eastern Europe and<br>Central Asia and to<br>describe the response<br>to HIV in this population<br>and the policy<br>environments in which<br>they live | A systematic review of<br>peer-reviewed and grey<br>literature addressing<br>HIV prevalence and risk<br>factors for HIV<br>prevalence among<br>PWID and a synthesis<br>of key resources<br>describing the response<br>to HIV in this<br>population.                                                                  | The HIV epidemic<br>among PWID in the<br>region is varied, with<br>the greatest burden<br>generally in Eastern<br>Europe.                                              |

#### Methodology

This study utilizes an exponential smoothing technique to model and forecast future trends of HIV prevalence among individuals aged 15-49 years in Estonia. In exponential smoothing forecasts are generated from the smoothed original



series with the most recent historical values having more influence than those in the more distant past as more recent values are allocated more weights than those in the distant past. This study uses the Holt's linear method (Double exponential smoothing) because it is an appropriate technique for modeling linear data. Holt's linear method is specified as follows: *Model equation* 

| i louci equation                                    |     |
|-----------------------------------------------------|-----|
| $E_t = \mu_t + \rho_t \mathbf{t} + \varepsilon_t.$  | [1] |
| Smoothing equation                                  |     |
| $S_t = \alpha E_t + (1-\alpha) (S_{t-1} + b_{t-1})$ | [2] |
| 0<∝<1                                               |     |
| Trend estimation equation                           |     |
| $b_t = \beta (S_t - S_{t-1}) + (1 - \beta) b_{t-1}$ | [3] |
| 0<β<1                                               |     |
| Forecasting equation                                |     |
| $f_{t+h} = S_t + hb_t$                              | [4] |
|                                                     |     |

 $E_t$  is the actual value of HIV prevalence at time t

- $\varepsilon_t$  is the time varying **error term**
- $\mu_t$  is the time varying mean (**level**) term
- $\rho_t$  is the time varying **slope term**

**t** is the trend component of the time series

 $S_t$  is the exponentially smoothed value of HIV prevalence at time t

 $\alpha$  is the exponential smoothing constant for the data

 $\beta$  is the smoothing constant for trend

 $f_{t+h}$  is the h step ahead forecast

 $b_t$  is the trend estimate (slope of the trend) at time t

 $b_{t-1}$  is the trend estimate at time t-1

#### **Data Issues**

This study is based on annual HIV prevalence among individuals aged 15-49 years in Estonia for the period 1990 - 2020. The out-of-sample forecast covers the period 2021 - 2030. All the data employed in this research paper was gathered from the World Bank online database.

#### **Findings of the study**

Exponential smoothing Model Summary

Table 1: ES model summary

| Variable                              | E         |
|---------------------------------------|-----------|
| Included Observations                 | 31        |
|                                       |           |
| Smoothing constants                   |           |
| Alpha (a) for data                    | 0.900     |
| Beta (β) for trend                    | 0.400     |
|                                       |           |
| Forecast performance measures         |           |
|                                       |           |
| Mean Absolute Error (MAE)             | 0.036414  |
| Sum Square Error (SSE)                | 0.074140  |
| Mean Square Error (MSE)               | 0.002392  |
| Mean Percentage Error (MPE)           | -1.134376 |
| Mean Absolute Percentage Error (MAPE) | 16.107962 |

Residual Analysis for the Applied Model





Figure 1: Residual analysis

# In-sample Forecast for E



Figure 2: In-sample forecast for the E series

# Actual and Smoothed graph for E series





Out-of-Sample Forecast for E: Actual and Forecasted Graph





Figure 4: Out-of-sample forecast for E: actual and forecasted graph

Out-of-Sample Forecast for E: Forecasts only

| • •                           |               |
|-------------------------------|---------------|
| Table 2: Tabulated out-of-sam | ple forecasts |

| Year | Forecasted HIV prevalence |
|------|---------------------------|
| 2021 | 0.8007                    |
| 2022 | 0.8013                    |
| 2023 | 0.8019                    |
| 2024 | 0.8025                    |
| 2025 | 0.8031                    |
| 2026 | 0.8037                    |
| 2027 | 0.8043                    |
| 2028 | 0.8049                    |
| 2029 | 0.8055                    |
| 2030 | 0.8061                    |

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among individuals aged 15-49 years will be constant around 0.8% throughout the out of sample period.

# POLICY IMPLICATION AND CONCLUSION

Our model shows that the annual HIV prevalence among individuals aged 15-49 years will be constant around 0.8% throughout the out of sample period. Therefore, addressing major drivers of HIV spread is a priority particularly among high risk groups.

# REFERENCES

- [1] UNAIDS (2015). (The Joint United Nations Programme on HIV/AIDS). Fact Sheet 2015. Geneva.
- [2] EHB (Estonian Health Board). 2014. aastal Eestis diagnoositud HIV-positiivsed [HIVpositive people diagnosed in Estonia in 2014]. Tallinn: EHB; 2015.
- [3] Adojaan M, Kivisild T, Männik A, Krispin T, Ustina V and Zilmer K (2005). Predominance of a rare type of HIV-1 in Estonia. J Acquir Immune Defic Syndr. 39(5):598-605.
- [4] Estonian Health Board [May 2016]. Available from: www.terviseamet.ee.
- [5] AIDS ECftEMo. HIV/AIDS Surveillance in Europe. End-year report 2001. Saint-Maurice:Institut de Veille Sanitaire, 2002. No. 662002.
- [6] Estonian National HIV and AIDS strategy for 2006-2015. Order No 771 of the Government of the Republic "Approval of the national HIV and AIDS strategy for 2006-2015 and establishment of the HIV and AIDS Committee of the Government of the Republic". 2005.
- [7] HIV Epidemic in Estonia: Analysis of Strategic Information. World Health Organization; 2011
- [8] Soodla P, Rajasaar H, Avi R, Zilmer K, Kink K, Novikova L (2015). Design and structure of the Estonian HIV Cohort Study (E-HIV). Infect Dis (Lond). 2015; 47(11):768-75.