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Integral equations, equations in which the unknown 

function is under the integral sign, play a key role in 
various fields of science and engineering, from physics 

and mechanics to economics and biology. Traditional 

methods for solving such methods, such as the 
method of successive approximations or the Fredholm 

method, are often effective and not always efficient, 
especially for complex integral methods. In recent 

years, new approaches have emerged that significantly 

improve the efficiency and accuracy of solutions. This 
article will briefly review some of them. 

1. Collocation-based methods: 
Collocation methods are numerical methods that 

approximate an unknown function using linear 

mathematical basis functions. The coefficients are 
calculated by this method using equations at a set of 

collocation points. Modern collocation methods often 
use orthogonal polynomials (e.g., Chebyshev or 

Legendre polynomials) as basis functions, which 
ensures high accuracy and stability. The advantages of 

this approach are the relative simplicity of 

implementation, the possibility of an efficient solution, 
and high dimensionality. 

The Fredholm integral equation of the second kind is 
considered: 

y(x) = x + λ∫₀¹ xy (t) dt 

where λ is a parameter and y(x) is an unknown 
function. We solve this equation by the collocation 

method using linear approximation. 
1. Selection of basis functions: 

chosen as basis functions are: φ₁(x) = 1 and φ₂(x) = 
x. Then the approximation solutions can be written in 

the video: 

y(x) ≈ c₁φ ₁(x) + c₂φ ₂(x) = c₁ + c₂x 
where c₁ and c₂ are unknown coefficients. 

2. Selecting collection points: 

You are pregnant with two collocation points: x₁ = 0 

and x₂ = 1. This is the minimum number of points for 
a linear approximation. 

3. Substitution into the equation: 

Let us substitute the approximation y(x) into the 
original equation and evaluate it at the collocation 

points: 
For x₁ = 0: 

c₁ + c₂(0) = 0 + λ∫₀¹ (0) * (c₁ + c₂t ) dt = 0 => c₁ 

= 0 
For x₂ = 1: 

c₁ + c₂(1) = 1 + λ∫₀¹ t(c₁ + c₂t ) dt 
Let's substitute c₁ = 0: 

c₂ = 1 + λ∫₀¹ c₂t² dt = 1 + λc ₂[t³/3]₀¹ = 1 + λc ₂/3 

4. Definition of the refinement system: 
We obtain the equation for c₂: 

c₂ = 1 + λc ₂/3 
c₂(1 - λ/3) = 1 

c₂ = 1/(1 – λ/3) = 3/(3 – λ) 
5. Solution: 

Thus, the approximate solution of the integral equation 

has the form: 
y(x) ≈ [3 / (3 - λ)]x 

Examination: 
Let's substitute this solution back into the original 

equation: 

[3 / (3 - λ)]x = x + λ∫₀¹ x[3 / (3 - λ)]t dt 
[3 / (3 - λ)]x = x + λ[3 / (3 - λ)]x [t²/2]₀¹ 

[3 / (3 - λ)]x = x + λ[3 / (3 - λ)]x (1/2) 
[3 / (3 - λ)]x = x [1 + λ/(2(3-λ))] 

This is the ratio of the indices only when approaching 
equality. The accuracy of the approximation depends 

on the choice of collocation points and the number of 

basis functions. To determine the accuracy, you can 
use a larger number of collocation points and more 

complex basis functions (for example, higher-order 
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polynomials). This example is the basic method of 
collocations. More complex algorithms and software 

are used to solve problems of determining accuracy. 

2. Methods based on Galerkin approximations: 
Galerkin methods, similar to collocation methods, also 

use approximation of the unknown function using 
basis functions. However, instead of two equations at 

the bottom points, they minimize the remainder of the 

equation in the integral sense. This leads to a system 
of linear algebraic models that can be solved by 

standard methods. The use of orthogonal basis 
functions makes this method very effective for solving 

integral models of various types. 

Let us solve the Fredholm integral equation of the 
second kind using the Galerkin method : 

y(x) = 1 + λ∫₀¹ (x + t)y(t) dt 
where λ is a parameter and y(x) is an unknown 

function. 
1. Selection of basis functions: 

For simplicity, we choose the basis functions as 

polynomials: φ₁(x) = 1 and φ₂(x) = x. We write the 
approximate solution as: 

y(x) ≈ c₁φ ₁(x) + c₂φ ₂(x) = c₁ + c₂x 
2. Formulation of the problem in weak form: 

We multiply the original equation by the weight 

functions (in the Galerkin method, the weight functions 
coincide with the basis functions) and integrate over 

the interval [0, 1]: 
∫₀¹ (y(x) - 1 - λ∫₀¹ (x + t)y(t) dt )φᵢ(x) dx = 0, where 

i = 1, 2 
3. Substitution of approximate solution: 

Let us substitute the approximate solution y(x) ≈ c₁ + 

c₂x into the equation: 
∫₀¹ (c₁ + c₂x - 1 - λ∫₀¹ (x + t)(c₁ + c₂t ) dt )φᵢ(x) dx 

= 0 
4. Solution for i = 1 (φ₁(x) = 1): 

∫₀¹ (c₁ + c₂x - 1 - λ∫₀¹ (x + t)(c₁ + c₂t ) dt ) dx = 0 

Let's divide the integrals: 
∫₀¹ (c₁ + c₂x - 1) dx - λ∫₀¹ ∫₀¹ (x + t)(c₁ + c₂t ) dtdx 

= 0 
Let's calculate the integrals: 

[ c₁x + c₂x²/2 - x]₀¹ - λ∫₀¹ [ xc ₁ + xc ₂/2 + tc ₁ + tc 

₂/2]₀¹ dx = 0 
c₁ + c₂/2 - 1 - λ∫₀¹ (c₁ + c₂/2 + c₁ + c₂t ) dt = 0 

c₁ + c₂/2 - 1 - λ[c₁ + c₂/2 + c₁ + c₂/2] = 0 
c₁ + c₂/2 - 1 - λ(2c₁ + c₂) = 0 

5. Solution for i = 2 (φ₂(x) = x): 
∫₀¹ (c₁ + c₂x - 1 - λ∫₀¹ (x + t)(c₁ + c₂t ) dt ) xdx = 0 

After similar calculations of integrals (more 

complicated), we obtain the second equation of the 
system. The details of the calculations are omitted 

here due to their cumbersomeness. 
6. Solution of the system of equations: 

As a result, we obtain a system of two linear algebraic 
equations with two unknowns c₁ and c₂. Having solved 

this system (for example, by the Cramer or Gauss 

method), we find the values of c₁ and c₂. 
7. Approximation of the solution: 

Substituting the found values of c₁ and c₂ into y(x) ≈ 
c₁ + c₂x , we obtain an approximate solution of the 

integral equation. 

Important to note: Calculating the integrals in step 
5 is quite complex, and it is better to use a 

mathematical package (for example, Mathematica , 
Maple, or Python with the SymPy library ) to obtain 

accurate values. This example shows the general 

approach of the Galerkin method. In more complex 
problems, the choice of basis functions and the 

number of equations in the system will be determined 
by the complexity of the problem and the required 

accuracy of the solution. 
3. Methods based on neural networks: 

Recently, there has been interest in using neural 

networks to solve integral methods. This approach is 
based on the ability of neural networks to approximate 

complex neural functions with an upper bound. The 
neural network is trained on examples of solving an 

integral equation, and after training, it can predict the 

solution for new input data. This method is especially 
effective for mathematical solutions, while other 

methods are not accurate. 
Unfortunately, it is very difficult to directly solve the 

integral equation problem using neural networks. 
Solving with neural networks is an iterative process 

that requires specialized software (e.g. TensorFlow , 

PyTorch ) and computing resources. I do not have 
access to such an environment. 

However, I can describe the steps needed to solve 
such a problem using neural networks: 

1. Formulation of the problem: 

Let us have an integral equation: 
y(x) = f(x) + ∫₀¹ K(x, t)y(t)dt 

Where: 

• y(x) is an unknown function; 

• f(x) is a known function; 

• K(x, t) are known sources of the integral 
equation. 

2. Approximation of the solution: 
We will approximate the solution y(x) using a neural 

network. There are different types of neural networks 

that can be used, for example: 

• Multilayer Perceptron (MLP): A Simple and 
Versatile Choice. 

• Recurrent Neural Networks (RNN): 

Suitable for solving problems with time series 
or persistent groups. 
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• Convolutional neural networks (CNN): 

can be effective if the source K( x,t ) has some 
structure. 

In our example, it is preferable to use MLP. The input 

network will be the value x, the output will be the 
approximate value y(x). 

3. functional losses: 
It is necessary to determine the loss of the function 

that will be minimized during neural network training. 

It should reflect the difference between the left and 
right parts of the integral equation. Possible option: 

L = ∫₀¹ ( y_pred (x) - f(x) - ∫₀¹ K(x, t) y_pred (t) dt )² 
dx 

where y_pred (x) is the output of the neural network. 

4. Training the neural network: 
Training a neural network to support minimization of 

the L function loss using gradient descent methods 
(e.g. Adam, RMSprop ). Calculating the gradient will 

require countable integration. 
5. Checking the result: 

After training the neural network, it is necessary to 

check the quality of the obtained solution by 
comparing it with classical analytical solutions (if any) 

or other listed methods. 
Code example (Python with TensorFlow / Keras 

- conceptual): 

import tensorflow as tf 
 

# Definition of neural network 
model = tf.keras.Sequential ([ 

  tf.keras.layers.Dense (64, activation=' relu ', 
input_shape =(1,)), 

  tf.keras.layers.Dense (64, activation=' relu '), 

  tf.keras.layers.Dense (1) 
]) 

 
# Definition of loss function (simplified version) 
def loss_function ( y_true , y_pred ): 

  # Here we need to implement numerical integration 
  # ... 
  return tf.reduce_mean ( tf.square ( y_true - y_pred 
)) 

# Compilation models 
model.compile (optimizer=' adam ', loss= 
loss_function ) 

# Generate training data 
# ... 
# Model training 
model.fit ( x_train , y_train , epochs=100) 

# Model checking 

# ... 
This code is just an example. The actual 

implementation will be much more complex and will 

require a deeper understanding of neural networks 
and complex integration methods. To solve a specific 

problem, you will need to adapt this code to a specific 

integral equation and select the appropriate neural 
network architecture. 

I hope this description will help you understand how to 
solve an integral equation using neural networks. 

Remember that this is a complex task that requires 

significant computational resources and specialized 
knowledge. 

4. Transformation-based methods: 
The use of integral transforms (such as the Laplace or 

Fourier transform) allows the integral equation to be 

reduced to an algebraic or differential equation that is 
easier to solve. This approach is particularly effective 

for analysis with special types of kernels. 
We solve the Volterra integral equation of the second 

kind using the Laplace transform: 
y(x) = x + ∫₀ˣ (x - t)y(t) dt 

1. Laplace transform: 

Let's write the Laplace transform for both parts of the 
equation: 

ℒ{y(x)} = ℒ{x} + ℒ{∫₀ˣ (x - t)y(t) dt } 
Let Y(s) = ℒ{y(x)}. Then : 

Y(s) = 1/s² + ℒ{∫₀ˣ (x - t)y(t)dt} 

2. Convolution theorem: 
The Laplace transform of the convolution of two 

functions is equal to the product of their Laplace 
transforms. In our case: 

ℒ{∫₀ˣ (x - t)y(t) dt } = ℒ{x} * ℒ{y(x)} = (1/s²) * Y(s) 
3. Substitution and solution: 

Let's substitute this into the equation: 

Y(s) = 1/s² + (1/s²) * Y(s) 
Let us solve this equation for Y(s): 

Y(s) * (1 - 1/s²) = 1/s² 
Y(s) * (s² - 1) / s² = 1/s² 

Y(s) = 1 / (s² - 1) = 1 / [(s - 1)(s + 1)] 

4. Inverse Laplace transform: 
Let's decompose Y(s) into simple fractions: 

Y(s) = A / (s - 1) + B / (s + 1) 
Let's find A and B: 

A = lim (s→1) [(s - 1)Y(s)] = lim (s→1) [1 / (s + 1)] 

= 1/2 
B = lim (s→-1) [(s + 1)Y(s)] = lim (s→-1) [1 / (s - 1)] 

= -1/2 
Thus: 

Y(s) = 1/2 * [1 / (s - 1) - 1 / (s + 1)] 
Now let's find the inverse Laplace transform: 

y(x) = ℒ⁻¹{Y(s)} = 1/2 * [ eˣ - e⁻ˣ ] = sinh (x) 

5. Solution: 
Therefore, the solution to the integral equation is: 

y(x) = sinh (x) 
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This example demonstrates the effectiveness of the 
transform method for solving certain types of integral 

equations. It is important to remember that the 

applicability of this method depends on the type of the 
kernel of the integral equation and the possibility of 

finding the inverse Laplace transform. 
 

5. Hybrid methods: 

Hybrid methods are also being developed that 
combine the advantages of different approaches. For 

example, combining the collocation method with 
optimization methods allows for efficient solution of 

problems with nonlinear integral equations. 

Solving an integral equation analytically using hybrid 
methods is extremely difficult, since a “hybrid method” 

implies a combination of several methods, the choice 
of which depends on the specific equation. An 

analytical solution is usually possible only for simple 
equations and specific combinations of methods. 

Therefore, I will demonstrate the concept of the hybrid 

method with an example using a combination of the 
collocation method and the iteration method . 

The full numerical solution will require software code 
and computing power. 

Task: 

Let us consider the Fredholm integral equation of the 
second kind: 

y(x) = x² + ∫₀¹ (x + t)y(t) dt 
Hybrid Method (Collocation + Iteration): 

1. Iterative Method: Let's start with the 
iterative process for an approximate solution. 

The iterative formula is: 

yₙ₊₁(x) = x² + ∫₀¹ (x + t)yₙ(t) dt 
Let's start with the zero approximation: y₀(x) 

= x² 
2. Collocation: Instead of calculating the 

integral at each iteration, we will use the 

collocation method. We will choose two 
collocation points: x₁ = 0 and x₂ = 1. At each 

iteration, we will substitute the approximate 
solution into the equation at these points. 

3. Linear approximation: Assume that the 

solution can be approximated by a linear 
function: 

yₙ(x) ≈ aₙ + bₙx 
4. Iterations with collocation: 

o Iteration 1: y₀(x) = x² 
▪ y₁(0) = 0² + ∫₀¹ (0 + t)t²dt 

= 1/4 

▪ y₁(1) = 1² + ∫₀¹ (1 + t)t²dt 
= 1 + 7/12 = 19/12 We solve 

the system of linear 
equations: a₁ + 0b₁ = 1/4; a₁ 

+ b₁ = 19/12 => a₁ = 1/4; 
b₁ = 5/6. y₁(x) ≈ 1/4 + 5/6x 

o Iteration 2: use y₁(x) to calculate 

y₂(x), etc. 
5. Termination of iterations: We continue the 

iteration process until the difference between 
successive approximations becomes small 

enough (the required accuracy is achieved). 

Notes: 

• This example demonstrates the concept of a 
hybrid method. To achieve high accuracy, 

more collocation points, more complex basis 
functions (not just linear ones), and probably a 

more sophisticated iterative method would be 

needed. 

• Numerical integration will be required to 
calculate the integrals at each iteration, even 

using the collocation method. 

• The solution of this problem in analytical form 
is impossible. The numerical result will be 

obtained after several iterations. 

• More sophisticated hybrid methods may 
include adaptive collocation methods, Runge-

Kutta methods for numerical integration, and 

other numerical optimization methods. 
This example illustrates the basic idea of the hybrid 

approach. To obtain a numerical solution, an 
implementation in a programming language (e.g. 

Python with NumPy and SciPy ) is required using 

numerical integration methods. 
 

Conclusion: 
The development of computer technology and 

mathematical methods has led to the emergence of 
new effective solutions to integral models. The above 

methods represent only a small part of the available 

approaches, and the choice of method depends on the 
type of integral equation and the requirements for the 

accuracy and efficiency of solutions. Further research 
in this area is aimed at developing even more effective 

and universal methods for solving integral algorithms 

capable of converters with increasingly complex 
problems in various scientific and engineering fields. 

 


