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INTRODUCTION 

Since the beginning of the nineties of the last century, 
applications of wavelet transformation began to enter 

the field of statistics as a powerful tool in the field of 

data smoothing. Considering the wavelet method in 
statistical estimates is one of the very powerful 

methods that have been spread by the Estimators 
Wavelet Shrinkage (where wavelet shrinkage is a 

method or method to remove Signal distortion is based 

on the idea of performing a Thresholding of the 
resulting wavelet coefficients By applying a Wavelet 

Transformation, the goal is to retrieve an unknown 
function, for example g, based on the noise-polluted 

data samples. Noise reduction techniques are a very 
effective and simple way to find structure in data sets 

without imposing a parametric regression model, very 

general assumptions are made about g such that it 
belongs to a particular class of functions Donoho and 

Johnstone (1994), Donoho et al. (1995) have 
introduced wavelet estimators Non-linearity in 

nonparametric regression by thresholding typically 

amounts to a per-term evaluation of coefficient 
estimates in the empirical wavelet expansion of the 

non-parametric function known. if the estimate of the 

modulus is large enough in absolute terms - that is, if 

it exceeds a predetermined threshold - the 
corresponding term is kept in the experimental wavelet 

expansion (or reduced to zero by an amount equal to 

the minimum); Otherwise it was deleted. Therefore, 
the use of a general threshold usually disintegrates 

with great difficulty in providing an appropriate 
threshold value for the wavelet threshold coefficients 

at all desired levels. This prompted the researchers to 

find functions and threshold values that suit that 
problem to obtain efficient wavelet estimations using 

deflated wavelet regression and different threshold 
rules. 

2 - Wavelet Regression 
The concept of wavelet regression or wavelet 

contraction is considered one of the modern methods 

for analyzing data and knowing the relationships 
between its variables. The process of converting data 

from the time domain to the wavelength domain to 
estimate an unknown function f(xi), which requires 

equal distances between points 〖 x〗_i and if the 

sample size is Daedician n = 〖2 〗^J, let us have 

minimum observations (, yn....= (y1 yi is given by the 

following formula:[1],[2] 
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yi = f(xi)+εi ……..(1) 

and that (x_i)=i⁄n and the aim is to estimate the 

unknown function f(xi) which is a nonparametric 

function, and xi ∈[0,1] and 〖 ε〗_i represents the 

white noise () and it is often assumed that it is 

independent and symmetrical in distribution ( i.i.d) is 
normally distributed N(0,1), or the estimation can be 

done by matrix method. 

      …….(2) ε+ f= y 
Since y=(y_1…..y_n), f=(f_1….f_n) and) ε_n….. 

ε=(ε_1, the wavelet coefficients w are then calculated 
by applying the discrete wavelet transform, where W is 

a matrix wavelet transform 

w=W y ……(3) 
(y_i ) ̂=W^(-1)w ....(4) 

Donoho et al., suggested a threshold-dependent 
estimation method in the wavelet field and that the 

thresholding process or wavelet contraction is the 

main process responsible for noise reduction which 
depends on the selection of the threshold and the 

thresholding method. All noise reduction algorithms 
first find an optimal threshold value. The threshold 

value and the threshold method are chosen, then the 
threshold function or the contraction method is 

chosen. , in wavelet regression the selection of the 

threshold value is a critical issue. Too large a value 

reduces too many coefficients resulting in excessive 

homogeneity. Conversely, a very small threshold value 
allows many coefficients to be included in the 

reconstruction, giving a fluctuating estimate that 
results in heterogeneity. However, the correct choice 

of threshold can be considered as a delicate balance of 

these principles and a great deal of research effort is 
spent on methods for selecting the limit value of 

wavelet contraction. Most of the early wavelet 
contraction techniques relied on Mallat's hierarchical 

algorithm (1989) to calculate the discrete wavelet 

transform (DWT) through three main steps: [1],[2] 
1- The observations are converted to the wavelet field 

by applying a discrete wavelet transform (DWT). The 
result is a series of wavelet coefficients di,i=1…n 

2 - The wavelet coefficients found in the first step are 
modified by using a “soft” or “hard” threshold rule to 

determine the value of the coefficients through 

wavelet shrinking as shown in Figure (1). 
3- The coefficients are inversely transformed by 

returning to the signal space by taking the inverse of 
the discontinuous wavelet transform (IDWT) to get the 

estimated function f ̂ . 

 
 

 
Figure (1) Shows Wavelet Contraction [3] 

 

3- Function Thresholding 
Wavelet Thresholding The wavelet threshold is 

considered one of the basics of wavelet 
transformation, whether it is discontinuous or 

continuous, and the threshold technique is a modern 
non-linear method used to reduce the wavelet noise. 

Using what is known as wavelet shrinking The wavelet 

shrinking process was introduced in the year (1995) by 
“Donho”, which operates on a wavelet modulus one at 

a time In its simplest form, each modulus is the 
threshold by comparison with the threshold, if the 

modulus is smaller than the threshold, set to zero; 
Otherwise it is kept or modified. There are several 

types of frequently used threshold functions such as, 
Hard Thresholding, . and semisoft Thresholdig and 

Improved Thresholding (2), as shown below: [4] 

 
4- Hard Thresholding 
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This method was proposed by Dohono and it 

represents a linear function, the coefficients below the 

threshold τ are set to zero while the other coefficients 
remain unchangedAs shown in equation (5), this 

method does not change the local properties of the 
signal, but because of the discontinuity, it leads to 

Specific oscillation in the reconstruction of the original 

signal, that is, it is a discontinuous function, and the 
variance is greater for the estimated function, while 

the amount of bias and the average error squares are 
as little as possible and are expressed in the following 

formula: [6],[7],[5] 

 

〖Th〗_Hard ={█(Y if |Y| >τ@0 if|Y|≤τ)┤ ........(5) 

〖 and Th〗_Hard is a representation of the estimated 

wavelet coefficients, (Y) is a representation of the 

noisy wavelet coefficients, τ) (it is the threshold, the 
hard threshold may look good, the hard threshold does 

not work even with some algorithms sometimes, it 

may exceed the pure noise coefficients Minimum and 
appear as annoying "light signals" in the output. Since 

the hard threshold function is not continuous at the 

starting point, so there are fluctuations in the recovery 

of the original signal. Compared to the hard threshold 
function, [7],[5] 

 
5- Threshold Semisoft Thresholding 

This method was suggested by Lu Jing-yi. And others, 

where the continuity of the soft threshold function is 
much better, but it still has a constant deviation. 

Therefore, in order to overcome its shortcomings, 
among the soft and hard threshold functions, a value 

of T is taken between 0 and 1. which is an adjustment 

factor of the function even if the result of a semi-soft 
threshold function is between them, the value of T is 

constant for that, there is still Constant bias, so the 
soft and hard threshold algorithms are compromised 

by the literature and expressed in the following 
formula:[6] 

〖Th〗_Semisoft ={█(sgn(Y)(|Y|-T τ), if |Y| >τ@0 , 

if|Y|≤τ)┤ ……..(6) 

 

Improved Thresholding(2))M2) 6- 
This method was suggested by the researchers. Jin, 

M., Wang, C. The basic idea of removing noise from 

the wavelet threshold is to perform wavelet 
decomposition on the scrambled signal to determine 

the wavelet basis and decomposition layers, and to 
address the shortcomings of these functions a new 

improved threshold function is proposed. For this 
optimized threshold function to distinguish the useful 

signal from the noise signal more effectively, the 
constant value of the partial wavelet coefficient 

compression is used, as well as to improve the stability 

and quality of the signal more effective de-noising, in 
addition, there is no uncertainty factor in the improved 

threshold function, which ensures Noise removal 
stability. It can be formulated according to the 

following equation: [8] 

 

𝑻𝒉 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒅(𝟐)  = {
𝒔𝒈𝒏(𝒀){|𝒀| − |𝒀|. 𝒆𝝉−|𝒀|},     𝒊𝒇 |𝒀|  > 𝝉

         𝟎                                       ,   𝒊𝒇|𝒀| ≤ 𝝉 
   ……(7) 

 

Figure 2 shows the Hard Threshold Function and the Semisoft . Threshold Function 
7- Threshold value 

There are various ways to choose the threshold value 
τ, which is an important parameter in the wavelet 

reduction algorithm to reduce signal noise and is very 

important and necessary in the wavelet conversion 

process. If the threshold value is too small, there will 

still be a lot of noise and the estimator will be 
oscillating, and if the threshold value is too large, 

some important features of the signal may be filtered, 

for this reason the appropriate selection of the 
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threshold value has a role in the accuracy of the 

estimation because the wavelet coefficients pass 

through the threshold limit, Therefore, optimization of 
the threshold value is an important criterion for 

obtaining a minimum MSE. There are many methods 
presented by (Jonston & Donoho) to determine the 

threshold value, among these methods:[1],[4] 

8- ((Sure Thresholding 
This method was introduced by Donoho and 

Johnstone, which is achieved by the principle of Stein 
Unbiased Estimation (SURE) Estimation (Stein 

Unbiased Risk) for each j-wave level, which is 

indicated at the threshold-dependent level, and the 
amount of this bias is expressed by the following 

formula :[1] 

)= N-2 ∑_(K=1)^N▒〖I(|djk|≤τ_j)〗 + ∑_(k=1)^N▒

〖min⁡〖(|djk|≤τ_j)〗^2 〗 . .......(8) 

d_(j,k),SURE(τ_j 

djk represents the wavelet coefficients, which are 

orthogonal as they result from the wavelet 
transformation, which is orthogonal, and the final 

formula for calculating the Sure Thresholding value is 
as in the following formula: 

τ_(j,sure)=〖argmin〗_(0≤τ≤√(2log(N) )) 

SUR(τ_(j,djk)) ........(9) 

where τ is the value that underestimates Stein's 
unbiased risk estimator. Sure Shrink reduces the mean 

squared error, and it also adjusts for smoothness, 
which means that if any unknown function includes 

sudden changes or boundaries in the image, the 

reconstructed image has the same as well. 

 9- Visushrink Thresholding)[9] 
This method is considered an improvement of the 

comprehensive threshold method, as it addresses the 
weakness of this method through its good 

performance even with an increase in the sample size, 

as it gives a more homogeneous and preparatory 
estimate. For n, which leads to a loss of many wavelet 

coefficients with noise, and therefore the threshold 
does not perform well at interruptions in the signal, 

and Visu Shrink does not deal with reducing the mean 

square error. This method can be illustrated according 
to the following formula: 

σ_n √(2 log⁡(n) )⁡ =τ_Visushrink      )10)....... 

〖 σ〗_n is the standard deviation of the noise level, 

which can be found through the following relationship: 

10-Test Function  
:[10](𝐷𝑜𝑝𝑝𝑙𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  

𝑓1(𝑥) = {𝑥(1 − 𝑥)}
1

2sin {2𝜋(1 + 𝜀)},  𝜀 =
0.05,    … … . (11) 

:[10](𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑛𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  
𝑓2(𝑥)= 4sin4𝜋x-sin(x-0.3)-sin(0.72-x)k           

............(12) 
:[10] (𝐵𝑙𝑜𝑐𝑘𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  

𝑓3(𝑥)= ∑ ℎ𝑗k(𝑥-𝑥𝑗),    𝑘(𝑥) = {1 + 𝑠𝑔𝑛(𝑥)}/2     

.........(13) 

𝑥𝑗 =(0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,

0.81) 

ℎ𝑗=(4,-5,-4,5,-4.2,2.1,4.3,-3.1,2.1,-4.2)

  

 
Figure (3) Test functions 

) Simulation(  
Simulation experiments were used for the purpose of 

comparing the methods used in estimating the 
nonparametric regression function in the presence of a 

correlation in errors of the type (AR(1)) through the 

use of three test functions and four sample sizes 
(64,128,256,512) and distortion ratios) SNR = 5 ) and 

(SNR=10) and (Hard Thresholding Rule) and (Smi soft 
Thresholding Rule) and (M2) Improved Tthresholding 

Rule2 were used. In addition to using two types of 
threshold values, namely (Sure Threshold) and 

(Visurink Threshold), the programming language (R 

1.3.4) was used in order to generate random variables 
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to build simulation models and to compare the 

methods described in the theoretical side. 

 
CONCLUSIONS:  

First: the test function (Doppler), which is shown in 
formula (11) and figure (3) 

1. In general, and according to the different sample 

sizes and noise levels, we note the superiority of the 
estimation methods using the visu threshold value and 

soft thresholds smi, followed by the improved M2 
method using the visu threshold value. 

2. In general, and with different sample sizes and 

noise levels, we note the superiority of the estimation 
methods using the value of the visu threshold, 

according to the different threshold rules over the sure 
threshold value. 

3. In general, we notice a decrease in the value of 
MSE with an increase in the sample size, except for 

the sample size n = 128 and for all methods and with 

different levels of confusion. 
4. The performance of both the method in which a 

hard threshld rule was used and the second improved 
method was degraded according to the different 

sample sizes and noise ratios. 

5. 
  Second: The test function (Heavisin), which is shown 

in formula (12) and figure (3) 
1. In general, and according to the different sample 

sizes and noise levels, we note the superiority of the 
estimation methods using the visu threshold value and 

the soft threshold smi rule, followed by the improved 

threshold method M2 using the visu threshold value. 
2. In general, and with different sample sizes and 

noise levels, we note the superiority of the estimation 

methods using the value of the visu threshold, 

according to the different threshold rules over the sure 

threshold value. 
3. In general, we notice the convergence of the 

performance of the methods (fabricating the threshold 
rules) according to the different percentages of 

disturbance, with a slight fluctuation in the priority 

according to the different percentages of disturbance. 
4. In general, we notice a decrease in the value of 

MSE with an increase in the sample size, except for 
the sample size n = 128 and for all methods and with 

different levels of confusion. 

Third: The test function (Blocks), which is shown in 
formula (13) and figure (3) 

1. In general, and according to the different sample 
sizes and noise levels, we note the superiority of the 

estimation methods using the visu threshold value and 
the soft thresholds smi, followed by the hard threshold 

using the visu threshold value. 

2. In general and the difference in sample sizes, we 
note the superiority of the estimation methods using 

the threshold value of visu and for all threshold rules 
at snr = 10 

3. In general, and with different sample sizes and 

noise levels, we note the superiority of the estimation 
methods using the value of the visu threshold 

according to the different threshold rules over the sure 
threshold value. 

4. In general, we notice a decrease in the value of 
MSE with the increase in the sample size, except for 

the sample size n=128, according to the different 

threshold rules used, except for the soft threshold 
method, and the sure threshold value is at the sample 

size n=256. 
Table (1) shows the MASE standard for comparing estimates of the fuzzy Doppler function for sample sizes n=256, 

n=512, n=128, n=64, and SNR=5 

 SNR=5                 

visuM2 visuH visuSS 

0.024976028 0.025385795 0.015281391 64 

0.025214769 0.025519515 0.015444371 128 

0.022535880 0.023050255 0.013649744 256 

0.023644305 0.024064499 0.013906215 512 

SNR=5 
 

sureM2 sureH sureSS  

0.051465243 0.048166493 0.048138453 64 

0.049981311 0.052176322 0.052400388 128 
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Table No. (2) shows the MASE standard for comparing estimates of the fuzzy Doppler function for 

sample sizes n=256, n=512, n=128, n=64, and SNR=10 

Table No. (3) shows the MASE criterion for comparing estimates of the Heavisin noise function for 

sample sizes n=256, n=512, n=128, n=64, and SNR=5 

0.047453802 0.048295582 0.047563567 256 

0.049353882 0.049354812 0.049136034 512 

 SNR=10                 

visuM2 visuH visuSS 

0.022256652 0.013090107 0.008091564 64 

0.024423094 0.014963310 0.009219536 128 

0.02376652 0.01408972 0.00866952 256 

0.021772550 0.012841216 0.007644609 512 

SNR=10 
 

sureM2 sureH sureSS  

0.047143832 0.048373100 0.047845049 64 

0.050109263 0.049654842 0.049471782 128 

0.04857544 0.04879521 0.04858452 256 

0.047703694 0.045619892 0.045524300 512 

 SNR=5                 

visuM2 visuH visuSS 

0.02554995 0.02638335 0.01616042 64 

0.024252560 0.024845241 0.014964049 128 

0.02685937 0.02773101 0.01738421 256 
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No. Table 
(4) 

shows the MASE criterion for comparing estimates of the Heavisin noise function for sample sizes 

n=256, n=512, n=128, n=64, and SNR=10 

 

Table No. (5) shows the MASE criterion for comparing estimates of the noise block function for sample 

sizes n=256, n=512, n=128, n=64, and SNR=5 

0.02717921 0.02805687 0.01747883 512 

SNR=5 
 

sureM2 sureH sureSS  

0.05155199 0.05163425 0.05075757 64 

0.050306758 0.051117127 0.051136725 128 

0.05308874 0.05336220 0.05301243 256 

0.05249794 0.05298663 0.05200169 512 

 SNR=10                 

visuM2 visuH visuSS 

0.02735299 0.02808614 0.01762605 64 

0.02716265 0.02747606 0.01706571 128 

0.02837626 0.02926064 0.01862900 256 

0.02590007 0.02656659 0.01672167 512 

SNR=10 
 

sureM2 sureH sureSS  

0.05270105 0.05311509 0.05245220 64 

0.05311391 0.05265030 0.05144485 128 

0.05275088 0.05410877 0.05380816 256 

0.05119800 0.05094459 0.05145047 512 

 SNR=5                 

visuM2 visuH visuSS 

0.05382346 0.05619947 0.04179863 64 

0.05494087 0.05792920 0.04302877 128 

0.05496527 0.05767663 0.04276670 256 

0.05324673 0.05545738 0.04116388 512 

SNR=5 

 

sureM2 sureH sureSS  

0.07973684 0.08065839 0.07958583 64 

0.08160770 0.08246401 0.08078343 128 

0.08016086 0.08164933 0.08066399 256 
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Table No. (6) shows the MASE criterion for comparing estimates of the noise block function for sample 

sizes n=256, n=512, n=128, n=64, and SNR=10 

 

0.07730232 0.08049101 0.07894982 512 

 SNR=10                 

visuM2 visuH visuSS 

0.05451861 0.05724394 0.04237049 64 

0.05469935 0.05689512 0.04262823 128 

0.05264007 0.05447124 0.04147842 256 

0.022305009 0.02275185 0.013097409 512 

SNR=10 
 

sureM2 sureH sureSS  

0.08150134 0.0784896 0.07786991 64 

0.07699004 0.08029136 0.07821845 128 

0.07855923 0.07896077 0.07909752 256 

0.05386647 0.05707252 0.04219745 512 
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Figure (4) shows the real and estimated values of the dependent variable Y using the dopler function and sample size  

 
 

Figure (5) shows the real and estimated values of the dependent variable Y using the heavi function and sample size 
(64, 128,256,512), respectively . 
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Figure (6) shows the real and estimated values of the dependent variable Y using the block function and sample size 

(128,256,512), respectively. 
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