

World Economics & Finance Bulletin (WEFB)

Available Online at: https://www.scholarexpress.net

Vol. 31, February, 2024

ISSN: 2749-3628,

 1

ACCELERATING GRAPH NEURAL NETWORK TRAINING WITH
COMMUNITY-BASED SAMPLING TECHNIQUES

Hamidullah Mahzon

master student of the faculty of Software Engineering

China West Normal University
Supervisor: He Jialin

Article history: Abstract:

Received: 4th December 2023 This paper presents a GNNear accelerator to tackle these challenges.

GNNear adopts a DIMM-based memory system to provide sufficient memory

capacity. To match the heterogeneous nature of GNN training, we offload
the memory-intensive Reduce operations to in-DIMM Near-Memory-Engines

(NMEs), making full use of the high aggregated local bandwidth. Recently,
Graph Neural Networks (GNNs) have become state-of-the-art algorithms for

analyzing non-euclidean graph data. However, to realize efficient GNN
training is challenging, especially on large graphs. The reasons are many-

folded: 1) GNN training incurs a substantial memory footprint. Full-batch

training on large graphs even requires hundreds to thousands of gigabytes
of memory. 2) GNN training involves both memory-intensive and

computation-intensive operations, challenging current CPU/GPU platforms.
3) The irregularity of graphs can result in severe resource under-utilization
and load-imbalance problems.

Accepted: 7th January 2024

Published: 14th February 2024

Keywords: Graph neural networks, distributed training, Billion-scale graphs, accelerating graph neural,
network training.

1 INTRODUCTION

When a graph is too big to fit in the memory of
a single training machine, the graph is often partitioned

across multiple machines, and inter-machine
communication is used to request and provide the

relevant graph data needed by each machine to train

the GNN model. We have observed that, oftentimes, the
features associated with the graph nodes take up the

bulk of the graph representation size. Often, the node
features take up more than 90% of the memory needed

to represent the graph.

Guided by this observation, we designed a new
partitioning strategy, hybrid partitioning, that replicates

the relatively small graph topology information (the
graph’s adjacency matrix) across all training machines,

and only partitions the graph’s node features, as
illustrated. Graph Neural Networks (GNNs) have

achieved great success across different graph-related

tasks (Hamilton et al., 2017; Hu et al., 2020; Ying et al.,
2018; Jiang et al., 2022; Zhou et al., 2022; 2023).

However, despite its effectiveness, the training of GNNs
is very time-consuming. Specifically, GNNs are

characterized by an interleaved execution that switches

between the aggregation and update phases. Namely,
in the aggregation phase, every node aggregates

messages from its neighborhoods at each layer, which

is implemented based on sparse matrix-based

operations (Fey & Lenssen, 2019; Wang et al., 2019).
In the update phase, each node will update its

embedding based on the aggregated messages, where
the update function is implemented with dense matrix-

based operations (Fey & Lenssen, 2019; Wang et al.,

2019). In Figure 1, SpMM and MatMul are the sparse
and dense operations in the aggregation and update

phases, respectively. Through profiling, we found that
the aggregation phase may take more than 90%

running time for GNN training. This is because the

sparse matrix operations in the aggregation phase have
many random memory accesses and limited data reuse,

which is hard to be accelerated by community
hardwares (e.g., CPUs and GPUs) (Duan et al., 2022b;

Han et al., 2016; Duan et al., 2022a). Thus, training
GNNs with large graphs is often time-inefficient.

Because of the ability to learn both the structure and

attributes of the graphs at the same time, Graph neural
networks (GNN) is widely used in many fields such as

node classification and link prediction in
recommendation systems social networks biomedical

science knowledge graph. Since training GNN is a very

time- and resource-consuming task general-
purpose graphics processing units (GPUs) are often

used to accelerate the training process. Several general

World Economics & Finance Bulletin (WEFB)

Available Online at: https://www.scholarexpress.net

Vol. 31, February, 2024

ISSN: 2749-3628,

2

GNN learning frameworks have been developed, such

as.

The core computations in GNN training come
from the continuous information gathering from

neighboring vertices and updating the vertices’ feature
vectors through a neural network. Multiple such layers

can be stacked to aggregate multiple hop messages.

Usually, a GNN has 2-3 layers. Challenges still remain to
train GNN efficiently. First, many real-world social

graphs are of huge size with rich attribute information.
For example, ogbn-papers100M [10] has 111 M vertexes,

1.6B edges with 53 GB of vertex feature, while the
memory capacity of commercially available GPUs is

usually tens of GB, (e.g., 16 GB for NVIDIA P100 GPU).

Second, the multi-layer stacking structure like a deep
learning network increases the memory footprint of the

full graph-based training. To solve the scalability
problem, the method of sampling-based training is

proposed. In the sampling-based training, subgraphs

are extracted by starting from the training vertexes and
continuously sampling the neighboring vertices within

L-hops. A fixed number of neighbors are selected
(sampled) in each layer based on specific sampling

strategies such as random sampling, weighted

sampling, and random walk. The sampling can reduce
both computations and memory requirements in one

iteration. Finally, all the training vertices are processed
in mini-batches, and the model parameters are updated

iteratively until the model converges.
In the sampling-based training, the existing

systems such as DGL PYG and PinSage adopt the

hybrid CPU+GPU mode. In this mode, the whole
training process is divided into three stages:

i) subgraphs sampling,
ii) feature extraction and transmission, and

iii) the actual GNN training. First, the structure

and feature data of the graph are stored in the CPU
memory.

The CPU is responsible for sampling the graph
and generating subgraphs for training. Next, the

sampled subgraphs and the collected features are
transferred to the GPU, where the GNN training is

performed. As the CPU memory capacity is usually much

larger than that of GPUs, this mode can support the
training of huge graphs in the single- or multi-GPU

setting. However, the feature transmission and the
CPU-based sampling may become the performance

bottleneck due to the low PCIe bandwidth but fast GPU

training, which leads to low GPU utilization since the
GPU may have to wait for sampled subgraphs.

3 MATERIALS AND METHODS

For a graph represents a vertex (node) in the

graph with the feature set denoted by fv, and the edge

between two vertices represents the relationship
between them. A GNN model learns the high-

dimensional feature representation of each node by
gathering the information from its neighboring nodes in

the previous layer and updating its feature vector

following the topology of the deep network (such as
Multilayer Perceptrons) iteratively. The core

computations in a GNN layer can be divided into two
stages: message aggregation and feature

transformation. The three optimizations respectively
improve the CPU throughput of neighborhood sampling

and expansion); reduce slicing overhead (yellow

boxes); and enable overlapped GPU transfers and
computations (red and blue boxes). With a reasonably

high CPU-to-GPU ratio, as is often the case in modern
computing clusters, these optimizations almost

eliminate GPU idle time, enabling fast training at a

speed commensurate with that of the core training
operations. Additionally, this work studies inference.

Although tradeoffs among accuracy, speed, and
memory requirements have been studied extensively for

training, they are relatively under-studied for inference.

We conduct an empirical analysis that indicates that
neighborhood sampling in inference sacrifices prediction

accuracy only marginally. This suggests that mini-batch
inference with neighborhood sampling is a viable

alternative to layer-wise inference with full
neighborhoods, yielding accuracy comparable to the

latter but with a much lower memory footprint. As an

added advantage, model architecture code can be
reused between training and inference, simplifying

development.
Sampling-Based Training

In the layer-stacked GNN training model,

processing every node in a graph is not viable for large
graphs due to the large computation and memory

footprint. Also, not every node in a graph is labeled for
computing the loss and the gradient and updating the

model parameters. Inspired by mini-batch-based
training in deep learning, sampling-based training is

introduced. At each iteration, the nodes in a mini-batch

are randomly shuffled and selected as seed nodes in
training. Starting from the seed nodes, a fixed number

of neighboring nodes are sampled from all neighbors.
This process iterates for K times in a K-layer GNN. In

each iteration, a subgraph is generated (e.g., bipartite

graph blocks in DGL). A subgraph consists of the
destination vertices, which are the source vertices from

the last iteration, and their neighbors that are sampled
(the sampled neighbors become the destination vertices

javascript:scrollToReference('ref10');

World Economics & Finance Bulletin (WEFB)

Available Online at: https://www.scholarexpress.net

Vol. 31, February, 2024

ISSN: 2749-3628,

3

of the subgraph in the next iteration). This way, each

vertex has the same number of edges in the subgraphs,

which reduces the computation complexity in GNN
training and improves the regularity of the message

aggregation for the subgraphs. It has been shown that
the sampling-based methods can achieve accuracy

competitive with the training of the full graph.

In the sampling-based training, the hybrid
CPU+GPU computation mode is widely adopted in

previous GNN systems. In this mode, an iteration in the
GNN training can be further divided into three stages: i)

CPU sampling, ii) subgraph and feature transfer; iii)
GNN training. The time spent by the CPU in sampling

the subgraphs and in transferring the high-dimensional

vertex features dominates the entire GNN training

process, which forms a severe performance bottleneck.

Usually, a GNN uses a shallow network structure with

less than four layers. Given the limited bandwidth of
PCIe (usually less than 16 GB/s) and the large amount

of feature data that needs to be transferred (e.g., 53
GB for the ogbn-papers100 M graph), the huge

communication cost can hardly be hidden by GNN

computations in such shallow network structures.
To reduce the communication cost, the GPU-

based caching technique is proposed in a system called
PaGraph. PaGraph caches as many features of the high-

degree vertices as possible in the GPU memory. The
caching technique has been shown to be effective,

especially on large graphs where the node degree

follows the power-law distribution.

Figure 2: Overview of RSC .

For convenience, ReLU is ignored. RSC only
replace the SpMM in the backward pass with its

approximated version using top-k sampling.

RESULTS AND DISCUSSION

Graph sampling has to be done during each

training iteration. It is thus imperative that graph

sampling is done as fast as possible. The typical
sampling pipeline as implemented in popular GNN

libraries, such as DGL (a popular GNN training library),

involves multiple steps that each generate intermediate
tensors that have to be written to, and then read from,

memory.

World Economics & Finance Bulletin (WEFB)

Available Online at: https://www.scholarexpress.net

Vol. 31, February, 2024

ISSN: 2749-3628,

4

Figure 2. Flame graph showing the fraction of time spent on graph sampling, forward pass, and
backward pass. We used DGL and trained on a 2-socket 3rd Generation Intel® Xeon® processor.

On large graphs, GNN training proceeds in the

unit of minibatches. Due to edge connections, the graph

nodes are not I.I.D distributed, and thus cannot be
sampled uniformly at random as minibatch data points.

State-of-the-art methods construct minibatches by
sampling on each GNN layer (i.e., layer sampling). The

vanilla GCN and its successor GraphSAGE sample by

tracking down the inter-layer connections. Their

approaches preserve the training accuracy of the
original model, but the parallel training is not work-

efficient due to a phenomenon often referred to as
“neighbor explosion”.

Figure 3. Partitioning of a toy graph (with nine nodes) to enable distributed training. Traditional

distributed GNN training libraries partition both the graph topology and the node features

Graph embedding is a powerful dimensionality

reduction technique to facilitate downstream graph
analytics. The embedding process converts graph nodes

with unstructured neighbor connections into points in a
low-dimensional vector space. Embedding is essential

for a wide range of tasks such as content
recommendation, traffic forecasting, image

recognition and protein function prediction. Among the
various embedding techniques, Graph Neural Networks

(GNNs) (including Graph Convolutional Network (GCN)

and its variants,) have attained much attention. GNNs

World Economics & Finance Bulletin (WEFB)

Available Online at: https://www.scholarexpress.net

Vol. 31, February, 2024

ISSN: 2749-3628,

 5

produce accurate and robust embedding without the

need of manual feature selection.
Performance analysis of batch preparation

Batch preparation comprises two steps: (a)
neighborhood sampling to obtain the mini-batch

induced subgraph, and (b) slicing the feature and label

tensors to extract the parts that correspond to the
sampled subgraph. Both steps are parallelized:

sampling uses a PyTorch DataLoader and
multiprocessing, and slicing uses multiple OpenMP

threads in a single process. The relative performance of
sampling and slicing is not easily obtained from per-line

measurements, as sampling is performed

asynchronously with the main execution thread. As
such, we investigate the performance of sampling and

slicing using separate targeted benchmarks. Batch
preparation time is dominated by the neighborhood

sampling time, requiring 7.2 seconds with 20 worker

processes. Slicing, by comparison, takes just 1.2
seconds when parallelized with 20 OpenMP threads

using PyTorch’s parallel slicing code. Even a
conservative analysis of the performance breakdown in

Tables 1 and 2 implies that neighborhood sampling is a

substantial bottleneck in GNNs. For PyG to perform
sampling at a pace that can keep a single GPU busy and

hide sampling latency on ogbn-products, sampling
throughput must be improved by at least 3×. When

using multiple GPUs per machine, the required speedup
is higher.

CONCLUSION
Optimization in the above two steps can be

generalized to support multiple kinds of GNN models
and sampling algorithms. We achieve work-efficiency by

avoiding “neighbor explosion”, as each layer of our

minibatched GNN contains the same number of neurons
corresponding to the subgraph nodes. Finally, we

achieve learning accuracy since our sampled subgraphs
preserve connectivity characteristics of the original

training graph. The main contributions of this paper are:
•We propose a parallel GNN training algorithm

based on graph sampling:

–Accuracy is achieved since the sampler returns
small, representative subgraphs of the original graph.

–Efficiency is optimized since we always build
complete GNNs on the minibatch subgraphs to avoid

“neighbor explosion” in deeper layers.

–Scalability is achieved with respect to number
of processing cores, graph size and GNN depth by

parallelizing various key steps.
–We propose a novel data structure that

supports fast, incremental and parallel updates to a
probability distribution. Our parallel sampler based on

this data structure theoretically and empirically achieves

near-linear scalability with respect to number of

processing units.
–We parallelize all the key operations to scale

the overall minibatch training to a large number of
processing cores. Specifically, for subgraph feature

propagation, we perform intelligent partitioning along

the feature dimension to achieve close-to-optimal DRAM
and cache performance.

We propose a runtime scheduling algorithm for
training:

–By rearranging the order of various operations,
we significantly reduce the training time under a wide

range of model configurations.

–By partition scheduling and node clipping of
subgraphs, we improve the feature propagation

performance by better cacheline alignment.
We show that our parallelization and scheduling

techniques are applicable to a number of GNN

architectures (including graph convolution and graph
attention) and graph sampling algorithms (including

random edge sampling and variants of random walk
sampling). We perform thorough evaluation on a 40-

core Xeon server. Compared with serial implementation,

we achieve 15× overall training time speedup.
Compared with state-of-the-art minibatch methods, our

training achieves up to 7.8× speedup without accuracy
loss.

REFERENCES

1. 2019. Kgat: Knowledge graph attention

network for recommendation. In Proceedings
of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data
Mining. 950--958.

2. Junwhan Ahn, Sungpack Hong, Sungjoo Yoo,

Onur Mutlu, and Kiyoung Choi. 2015. A scalable
processing-in-memory accelerator for parallel

graph processing. In Proceedings of the 42nd
Annual International Symposium on Computer

Architecture. 105--117.
3. Mohammed Alandoli, Mohammed Shehab,

Mahmoud Al-Ayyoub, Yaser Jararweh, and

Mohammad Al-Smadi. 2016. Using GPUs to
speed-up FCM-based community detection in

Social Networks. In 2016 7th International
Conference on Computer Science and

Information Technology (CSIT). 1--6.

4. Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da
Eun Shim, Sung Kyu Lim, and Hyesoon Kim.

2021. FAFNIR: Accelerating Sparse Gathering
by Using Efficient Near-Memory Intelligent

Reduction. In IEEE International Symposium on
High-Performance Computer Architecture,

HPCA 2021, Seoul, South Korea, February 27 -

March 3, 2021. IEEE, 908--920.

World Economics & Finance Bulletin (WEFB)

Available Online at: https://www.scholarexpress.net

Vol. 31, February, 2024

ISSN: 2749-3628,

 6

5. Hadi Asghari-Moghaddam, Young Hoon Son,

Jung Ho Ahn, and Nam Sung Kim. 2016.
Chameleon: Versatile and practical near-DRAM

acceleration architecture for large memory
systems. In 2016 49th annual IEEE/ACM

international symposium on Microarchitecture

(MICRO). IEEE, 1--13.
6. Aleksandar Bojchevski and Stephan

Günnemann. 2017. Deep gaussian embedding
of graphs: Unsupervised inductive learning via

ranking. arXiv preprint
arXiv:1707.03815 (2017).

7. Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma,

James Cheng, and Fan Yu. 2021. DGCL: an
efficient communication library for distributed

GNN training. In EuroSys '21: Sixteenth
European Conference on Computer Systems,

Online Event, United Kingdom, April 26--28,

2021, Antonio Barbalace, Pramod Bhatotia,
Lorenzo Alvisi, and Cristian Cadar (Eds.). ACM,

130--144.
8. Jiaxian Chen, Guanquan Lin, Jiexin Chen, and

Yi Wang. 2021. Towards efficient allocation of

graph convolutional networks on hybrid
computation-in-memory architecture. Science

China Information Sciences 64, 6 (2021), 1--14.
9. Jie Chen, Tengfei Ma, and Cao Xiao. 2018.

Fastgcn: fast learning with graph convolutional
networks via importance sampling. arXiv

preprint arXiv:1801.10247 (2018).

10. Lawson, C. L., Hanson, R. J., Kincaid, D., , and
Krogh, F. T. Basic linear algebra subprograms

for FORTRAN usage. ACM Trans. Math. Soft.,
5:308–323, 1979.

11. Li, Y., Tarlow, D., Brockschmidt, M., and Zemel,

R. Gated graph sequence neural networks. In
ICLR, 2016.

12. Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion
convolutional recurrent neural network: Data-

driven traffic forecasting. In ICLR, 2018.

