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Graph Neural Networks (GNNs) have become state-of-the-art algorithms for 
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folded: 1) GNN training incurs a substantial memory footprint. Full-batch 

training on large graphs even requires hundreds to thousands of gigabytes 
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3) The irregularity of graphs can result in severe resource under-utilization 
and load-imbalance problems. 
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1 INTRODUCTION  

When a graph is too big to fit in the memory of 
a single training machine, the graph is often partitioned 

across multiple machines, and inter-machine 
communication is used to request and provide the 

relevant graph data needed by each machine to train 

the GNN model. We have observed that, oftentimes, the 
features associated with the graph nodes take up the 

bulk of the graph representation size. Often, the node 
features take up more than 90% of the memory needed 

to represent the graph. 

Guided by this observation, we designed a new 
partitioning strategy, hybrid partitioning, that replicates 

the relatively small graph topology information (the 
graph’s adjacency matrix) across all training machines, 

and only partitions the graph’s node features, as 
illustrated. Graph Neural Networks (GNNs) have 

achieved great success across different graph-related 

tasks (Hamilton et al., 2017; Hu et al., 2020; Ying et al., 
2018; Jiang et al., 2022; Zhou et al., 2022; 2023). 

However, despite its effectiveness, the training of GNNs 
is very time-consuming. Specifically, GNNs are 

characterized by an interleaved execution that switches 

between the aggregation and update phases. Namely, 
in the aggregation phase, every node aggregates 

messages from its neighborhoods at each layer, which 

is implemented based on sparse matrix-based 

operations (Fey & Lenssen, 2019; Wang et al., 2019). 
In the update phase, each node will update its 

embedding based on the aggregated messages, where 
the update function is implemented with dense matrix-

based operations (Fey & Lenssen, 2019; Wang et al., 

2019). In Figure 1, SpMM and MatMul are the sparse 
and dense operations in the aggregation and update 

phases, respectively. Through profiling, we found that 
the aggregation phase may take more than 90% 

running time for GNN training. This is because the 

sparse matrix operations in the aggregation phase have 
many random memory accesses and limited data reuse, 

which is hard to be accelerated by community 
hardwares (e.g., CPUs and GPUs) (Duan et al., 2022b; 

Han et al., 2016; Duan et al., 2022a). Thus, training 
GNNs with large graphs is often time-inefficient. 

Because of the ability to learn both the structure and 

attributes of the graphs at the same time, Graph neural 
networks (GNN) is widely used in many fields such as 

node classification and link prediction in 
recommendation systems social networks  biomedical 

science  knowledge graph. Since training GNN is a very 

time- and resource-consuming task  general-
purpose graphics processing units (GPUs) are often 

used to accelerate the training process. Several general 
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GNN learning frameworks have been developed, such 

as. 

The core computations in GNN training come 
from the continuous information gathering from 

neighboring vertices and updating the vertices’ feature 
vectors through a neural network. Multiple such layers 

can be stacked to aggregate multiple hop messages. 

Usually, a GNN has 2-3 layers. Challenges still remain to 
train GNN efficiently. First, many real-world social 

graphs are of huge size with rich attribute information. 
For example, ogbn-papers100M [10] has 111 M vertexes, 

1.6B edges with 53 GB of vertex feature, while the 
memory capacity of commercially available GPUs is 

usually tens of GB, (e.g., 16 GB for NVIDIA P100 GPU). 

Second, the multi-layer stacking structure like a deep 
learning network increases the memory footprint of the 

full graph-based training. To solve the scalability 
problem, the method of sampling-based training is 

proposed. In the sampling-based training, subgraphs 

are extracted by starting from the training vertexes and 
continuously sampling the neighboring vertices within 

L-hops. A fixed number of neighbors are selected 
(sampled) in each layer based on specific sampling 

strategies such as random sampling, weighted 

sampling, and random walk. The sampling can reduce 
both computations and memory requirements in one 

iteration. Finally, all the training vertices are processed 
in mini-batches, and the model parameters are updated 

iteratively until the model converges. 
In the sampling-based training, the existing 

systems such as DGL  PYG  and PinSage  adopt the 

hybrid CPU+GPU mode. In this mode, the whole 
training process is divided into three stages:  

i) subgraphs sampling, 
ii)   feature extraction and transmission, and  

iii)  the actual GNN training. First, the structure 

and feature data of the graph are stored in the CPU 
memory.  

The CPU is responsible for sampling the graph 
and generating subgraphs for training. Next, the 

sampled subgraphs and the collected features are 
transferred to the GPU, where the GNN training is 

performed. As the CPU memory capacity is usually much 

larger than that of GPUs, this mode can support the 
training of huge graphs in the single- or multi-GPU 

setting. However, the feature transmission and the 
CPU-based sampling may become the performance 

bottleneck due to the low PCIe bandwidth but fast GPU 

training, which leads to low GPU utilization since the 
GPU may have to wait for sampled subgraphs. 

 
3 MATERIALS AND METHODS  

For a graph  represents a vertex (node) in the 

graph  with the feature set denoted by fv, and the edge 

between two vertices represents the relationship 
between them. A GNN model learns the high-

dimensional feature representation of each node by 
gathering the information from its neighboring nodes in 

the previous layer and updating its feature vector 

following the topology of the deep network (such as 
Multilayer Perceptrons) iteratively. The core 

computations in a GNN layer can be divided into two 
stages: message aggregation and feature 

transformation. The three optimizations respectively 
improve the CPU throughput of neighborhood sampling 

and expansion); reduce slicing overhead (yellow 

boxes); and enable overlapped GPU transfers and 
computations (red and blue boxes). With a reasonably 

high CPU-to-GPU ratio, as is often the case in modern 
computing clusters, these optimizations almost 

eliminate GPU idle time, enabling fast training at a 

speed commensurate with that of the core training 
operations. Additionally, this work studies inference. 

Although tradeoffs among accuracy, speed, and 
memory requirements have been studied extensively for 

training, they are relatively under-studied for inference. 

We conduct an empirical analysis that indicates that 
neighborhood sampling in inference sacrifices prediction 

accuracy only marginally. This suggests that mini-batch 
inference with neighborhood sampling is a viable 

alternative to layer-wise inference with full 
neighborhoods, yielding accuracy comparable to the 

latter but with a much lower memory footprint. As an 

added advantage, model architecture code can be 
reused between training and inference, simplifying 

development. 
Sampling-Based Training 

In the layer-stacked GNN training model, 

processing every node in a graph is not viable for large 
graphs due to the large computation and memory 

footprint. Also, not every node in a graph is labeled for 
computing the loss and the gradient and updating the 

model parameters. Inspired by mini-batch-based 
training in deep learning, sampling-based training is 

introduced. At each iteration, the nodes in a mini-batch 

are randomly shuffled and selected as seed nodes in 
training. Starting from the seed nodes, a fixed number 

of neighboring nodes are sampled from all neighbors. 
This process iterates for K times in a K-layer GNN. In 

each iteration, a subgraph is generated (e.g., bipartite 

graph blocks in DGL). A subgraph consists of the 
destination vertices, which are the source vertices from 

the last iteration, and their neighbors that are sampled 
(the sampled neighbors become the destination vertices 
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of the subgraph in the next iteration). This way, each 

vertex has the same number of edges in the subgraphs, 

which reduces the computation complexity in GNN 
training and improves the regularity of the message 

aggregation for the subgraphs. It has been shown that 
the sampling-based methods can achieve accuracy 

competitive with the training of the full graph. 

In the sampling-based training, the hybrid 
CPU+GPU computation mode is widely adopted in 

previous GNN systems. In this mode, an iteration in the 
GNN training can be further divided into three stages: i) 

CPU sampling, ii) subgraph and feature transfer; iii) 
GNN training. The time spent by the CPU in sampling 

the subgraphs and in transferring the high-dimensional 

vertex features dominates the entire GNN training 

process, which forms a severe performance bottleneck. 

Usually, a GNN uses a shallow network structure with 

less than four layers. Given the limited bandwidth of 
PCIe (usually less than 16 GB/s) and the large amount 

of feature data that needs to be transferred (e.g., 53 
GB for the ogbn-papers100 M graph), the huge 

communication cost can hardly be hidden by GNN 

computations in such shallow network structures. 
To reduce the communication cost, the GPU-

based caching technique is proposed in a system called 
PaGraph. PaGraph caches as many features of the high-

degree vertices as possible in the GPU memory. The 
caching technique has been shown to be effective, 

especially on large graphs where the node degree 

follows the power-law distribution. 
 

 
Figure 2: Overview of RSC . 

For convenience, ReLU is ignored. RSC only 
replace the SpMM in the backward pass with its 

approximated version using top-k sampling. 

 
RESULTS AND DISCUSSION 

Graph sampling has to be done during each 

training iteration. It is thus imperative that graph 

sampling is done as fast as possible. The typical 
sampling pipeline as implemented in popular GNN 

libraries, such as DGL (a popular GNN training library), 

involves multiple steps that each generate intermediate 
tensors that have to be written to, and then read from, 

memory. 
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Figure 2. Flame graph showing the fraction of time spent on graph sampling, forward pass, and 
backward pass. We used DGL and trained on a 2-socket 3rd Generation Intel® Xeon® processor. 

 
On large graphs, GNN training proceeds in the 

unit of minibatches. Due to edge connections, the graph 

nodes are not I.I.D distributed, and thus cannot be 
sampled uniformly at random as minibatch data points. 

State-of-the-art methods construct minibatches by 
sampling on each GNN layer (i.e., layer sampling). The 

vanilla GCN and its successor GraphSAGE  sample by 

tracking down the inter-layer connections. Their 

approaches preserve the training accuracy of the 
original model, but the parallel training is not work-

efficient due to a phenomenon often referred to as 
“neighbor explosion”. 

  

 

Figure 3. Partitioning of a toy graph (with nine nodes) to enable distributed training. Traditional 

distributed GNN training libraries partition both the graph topology and the node features 

Graph embedding is a powerful dimensionality 

reduction technique to facilitate downstream graph 
analytics. The embedding process converts graph nodes 

with unstructured neighbor connections into points in a 
low-dimensional vector space. Embedding is essential 

for a wide range of tasks such as content 
recommendation, traffic forecasting, image 

recognition and protein function prediction. Among the 
various embedding techniques, Graph Neural Networks 

(GNNs) (including Graph Convolutional Network (GCN) 

and its variants,) have attained much attention. GNNs 
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produce accurate and robust embedding without the 

need of manual feature selection. 
Performance analysis of batch preparation 

Batch preparation comprises two steps: (a) 
neighborhood sampling to obtain the mini-batch 

induced subgraph, and (b) slicing the feature and label 

tensors to extract the parts that correspond to the 
sampled subgraph. Both steps are parallelized: 

sampling uses a PyTorch DataLoader and 
multiprocessing, and slicing uses multiple OpenMP 

threads in a single process. The relative performance of 
sampling and slicing is not easily obtained from per-line 

measurements, as sampling is performed 

asynchronously with the main execution thread. As 
such, we investigate the performance of sampling and 

slicing using separate targeted benchmarks. Batch 
preparation time is dominated by the neighborhood 

sampling time, requiring 7.2 seconds with 20 worker 

processes. Slicing, by comparison, takes just 1.2 
seconds when parallelized with 20 OpenMP threads 

using PyTorch’s parallel slicing code. Even a 
conservative analysis of the performance breakdown in 

Tables 1 and 2 implies that neighborhood sampling is a 

substantial bottleneck in GNNs. For PyG to perform 
sampling at a pace that can keep a single GPU busy and 

hide sampling latency on ogbn-products, sampling 
throughput must be improved by at least 3×. When 

using multiple GPUs per machine, the required speedup 
is higher. 

 

CONCLUSION 
Optimization in the above two steps can be 

generalized to support multiple kinds of GNN models 
and sampling algorithms. We achieve work-efficiency by 

avoiding “neighbor explosion”, as each layer of our 

minibatched GNN contains the same number of neurons 
corresponding to the subgraph nodes. Finally, we 

achieve learning accuracy since our sampled subgraphs 
preserve connectivity characteristics of the original 

training graph. The main contributions of this paper are: 
•We propose a parallel GNN training algorithm 

based on graph sampling: 

–Accuracy is achieved since the sampler returns 
small, representative subgraphs of the original graph. 

–Efficiency is optimized since we always build 
complete GNNs on the minibatch subgraphs to avoid 

“neighbor explosion” in deeper layers. 

–Scalability is achieved with respect to number 
of processing cores, graph size and GNN depth by 

parallelizing various key steps. 
–We propose a novel data structure that 

supports fast, incremental and parallel updates to a 
probability distribution. Our parallel sampler based on 

this data structure theoretically and empirically achieves 

near-linear scalability with respect to number of 

processing units. 
–We parallelize all the key operations to scale 

the overall minibatch training to a large number of 
processing cores. Specifically, for subgraph feature 

propagation, we perform intelligent partitioning along 

the feature dimension to achieve close-to-optimal DRAM 
and cache performance. 

We propose a runtime scheduling algorithm for 
training: 

–By rearranging the order of various operations, 
we significantly reduce the training time under a wide 

range of model configurations. 

–By partition scheduling and node clipping of 
subgraphs, we improve the feature propagation 

performance by better cacheline alignment. 
We show that our parallelization and scheduling 

techniques are applicable to a number of GNN 

architectures (including graph convolution and graph 
attention) and graph sampling algorithms (including 

random edge sampling and variants of random walk 
sampling). We perform thorough evaluation on a 40-

core Xeon server. Compared with serial implementation, 

we achieve 15× overall training time speedup. 
Compared with state-of-the-art minibatch methods, our 

training achieves up to 7.8× speedup without accuracy 
loss. 
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