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1. INTRODUCTION  

The model in general is a mathematical 
representation of a problem in the real world, and the 

function of the model is to summarize and clarify the 

data as close as possible to reality, and at the same time 
it should be easy to understand and apply, and often 

the researcher has some data collected from the real 
world and his goal is to build a model on it without losing 

a lot of information. The model can consist of two 

different types of variables, which are the response 
variable (the dependent variable), which is the focus of 

the experiment, and it is the product of the model that 
the researcher wants to investigate about. The 

response variable can be single, or a model with two 
variables, or be multiple, and the explanatory variable 

is measured or determined. Explanatory variables by 

the researcher and explanatory variables are considered 
model inputs. These variables are called explanatory 

because they explain and show how the response 

variable is affected by its changes. The goal of linear 

regression is to fit a straight line to a number of points 
that reduces the sum of squares of errors, that is, to fit 

a straight line to a number of points that reduces the 

sum of squares of the residuals. Regression models are 
used for several purposes, description and analysis of 

the relationship between variables, prediction and 
selection of variables, but when the dependent variable 

in the regression model is of a descriptive (qualitative) 

type, it takes two values in numerical form (0,1), such 
as (success 1, failure 0), (cure from disease 1, no cure 

from disease 0), (reach 1 , Non-reaching 0), etc., it is 
called a binary Logistic Regression (BLR) model, , in 

logistic regression the goal is not to estimate the 
parameters of the model (measuring the change caused 

by the independent variables in the dependent variable) 

but the goal is to measure the probability of occurrence 
or non-occurrence of the phenomenon under study. 

Sometimes, the researcher faces a situation in which 
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some observations in the sample under study deviate 

from the original format of the data, either as a result 

of measurement errors or as a result of mismanagement 
of the experiment, or sometimes the researcher is 

concerned that those terms go extreme or deviate from 
the context of the rest of the data , thus, these data can 

be treated as outliers (polluted), so the random 

variables lose one of the most important basic 
assumptions for them, which is the symmetry and 

independence of the distribution of the sample items 
(iid), and also if these outliers values are ignored in 

estimating the parameters, the variance of those 

estimates will increase and lead to inappropriate tests. 
Therefore, the application of classical methods directly 

to the model estimation does not give efficient 
estimates and thus inaccuracy in the estimation. The 

discovery of outliers observations are important either 
because those outliers themselves are important in 

themselves, or the experimenter wants to prevent the 

outliers from appearing in the estimates required. At the 
present time, the use of the Robust Method has grown 

in order to mitigate the impact of outliers on the data, 
which are widely used in linear models, but when the 

model under study is non-linear as logistic model and 

has a degree of complexity, these classical methods 
may not perform the required ones. Many researchers 

dealt with the logistic regression, some of them were 
interested in robustness and some did not pay attention 

to it. (Ahmad & et al, 2010) 
analyzes the performance of the MLE and four 

existing vigorous estimators under diverse exception d

esigns. ( Feng & et. al., 2014) use logistic regression 
with arbitrary outliers in the covariate matrix and  

propose a new robust logistic regression algorithm, 
called RoLR, that estimates the parameter through a 

simple linear programming procedure. (Bednarski, 

2016) Computationally attractive Fisher consistent 
robust estimation methods based on adaptive 

explanatory variables trimming are proposed for the 
log- logistic regression model. (Dhymeaa, 2017) use of 

robust Bayes methods in estimating the logistic 
regression function on stroke disease.( Kurnaz & et al, 

2018) used Robust and sparse estimation methods for 

linear and logistic regression in high dimensions. 
(Ahmed & Cheng, 2020) presents 

a modern course of vigorous methods for logistic 
regression. (S. Alshqaq & et al, 2021) 

examines the impact of exceptions on circular  logistic 

regression.  
 

2. OUTLIERS (CONTAMINATION) DATA 
A contaminants or an outlier is an element that is out of 

the pattern characteristic of a particular set or 

combination (different from the normal pattern of data). 

And they are data points that are far away from the 

majority of other data points, that is, they are 

observations that are not consistent with the rest of the 
data of the group for any of the variables for a particular 

phenomenon or for a group of phenomena, the value of 
this observation may be large or may be small located 

at one end of the group of observations arranged 

ascending or descending And that its abnormality may 
in many cases be a natural issue inherent in some 

variables. These are data that are not normally 
distributed. Anomalous (polluted) viewing is defined 

statistically as the observation that comes from a 

different population than the population under study. 
That is, the original community was polluted by 

observations from another community, and these 
observations are called contaminants. (Al-Yassery, 

2007, 4). Outliers are observations that deviate greatly 
from other observations and are generated in a different 

way from the method of generating the original 

observations (Hekimoglu & Erenoglu , 2013, 421). While 
researchers (Barnett & Lewis) (1994) defined the 

anomalies as (observations that show 
up conflicting with the rest of the information set) 

(Obikee & et.al. 2014 , 537) .  

3. ROBUSTNESS 
 The basics of the linear regression model and explained 

that the statistical methods are considered immune in 

the event of breaching the basic conditions of the 
methods adopted in the estimation (Dhymeaa, 2017, 

17). 
 

4. BINARY DATA: 

Binary data can be defined as variables that are not 
subject to units of measurement and are known as 

qualitative variables (Cook, 2001,) , such as gender 
(male or female). In these cases, the binary dependent 

variable response (y) is either equal to one (for the 
occurrence of the event) or zero (the event did not 
occur). Since the variable (𝑌𝑖) (response variable) is 

Bernoulli distribution distributed, and therefore the 

random error term (εi) in the case of binary data is not 
distributed normally, but Bernoulli distribution is 

distributed with mean zero and variance pi (1-pi) that is, 
it is discrete and not continuous, which causes the 

problem of Heterogeneation  , and that the variance of 
the random error term depends on the logistic 

regression function pi at each observation of i, which 

leads to the inhomogeneity of the variance of the 
random error term at each level of the vector xi, and 

therefore it is not possible to use the method Ordinary 
least squares (OLS) parameter estimation process for 

binary data(Al-Azzawi, 2005) .  
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5. BINARY LOGISTIC REGRESSION MODEL  

Logistic regression is based mainly on the assumption 

that the dependent variable is a binary variable that 
follows the Bernoulli distribution, taking the value (1) 

with the probability of  P (the probability of the response 
occurring) and the value (0) with the two probability 

q=1-P (the probability of the response not occurring). 

As we know, in a linear regression that's independent 
and dependent variables take continuous values, the 

model that links the variables is: 
Y = b0 + b1Xi + e                                                                                                                             

(1) 

Since Y is a variable that represents a continuous 

variable, and the expected of the observed (real) values 
of Y is E(Y/X) and e=Y-�̂� the equation (1) can be written 

as follows: 
E(Y/X) = b0 + b1Xi                                                                                                                         

(2) 

In the regression, as is known, the right-hand side of 

these models takes values from (∞-) to (∞+), but when 
the binary dependent variable takes values of zero or 

one, the linear regression is not appropriate because: 
E(Y/X) = P(Y = 1) = P′                                                                                                                  

(3) 

Because the value of the right-hand side is confined 

between zero and one. Thus, the model is not applicable 
from the point of view of regression, and to solve this 

problem, the natural logarithm is entered on the 
dependent variable, and since 0≥p 1≥  , the ratio P/(1-

P) is a positive amount between (∞,0) That is, and  0≥ 
P/(1-P) ≥ ∞ , therefore the regression model can be 

written in the case of one independent variable as 

follows: 

ln ቀ
P

1−P
ቁ = b0 + b1Xi                                                                                                                        

(4) 

If we have more than one independent variable, the 
model is as follows: 

ln ቀ
P

1−P
ቁ = b0 + σ bjXij

k
i=1     ; j = 1,2, … . . k      ,         i =

1,2, … . . , n                                            (5) 

By taking the inverse of the natural logarithm of the 
function (5), it can be written as follows: 

𝑃 =
1

1+exp (−(b0+ σ bjXij
k
i=1 ))

   ;   j = 1,2, … . . k      ,         i =

1,2, … . . , n                                              (6) 

This model is called the logistic regression model or the 
logit model, and the transformation is called ln (P/(1-P)) 

with the logit transformation or the logarithm Odds 

Ratio. And the logistic function is a continuous function 

that takes the values (0,1), where y approaches zero as 

the right-hand side approaches (∞-) and y approaches 

(1) as the right-hand side approaches (∞+), and the 
logistic function is symmetric when The right side is 

equal to 1. Therefore, the logistic regression model is a 
logarithmic transformation of the linear regression by its 

transformation into a logistic function, so it will follow 

the characteristics of the logistic distribution, which 
makes the possibilities confined between (1,0), hence 

the name logistic regression. 

 6. OUTLIERS IN LOGISTIC REGRESSION: 
It is imperative to recognize between 

the distinctive cases 
of remote perceptions in logistic regression. In a binary 

logistic model  , exemptions can happen inside the Y-

space, the X-space or in both spaces . 
For double information, the whole y’s are  0 or 

1, consequently an error within the y heading can as it 
were happen as a transposition 0→1 or 1→0 . 

This sort of exception is additionally known 

as leftover exception or misclassification-type blunder . 
An perception which is extreme within 

the design space X is called 
a leverage exception or leverage point : a use point 

can be considered extraordinary or terrible.. A good 
leverage point happens when Y =1 with a huge value 

of P (𝑌 =
1

𝑥𝑖
) or when Y = 0 with little value of P (𝑌 =

1

𝑥𝑖
) 

, and vice versa for a awful leverage point . Victoria- 

Feser (2002) showed that the MLE can 
be impacted by extraordinary values within 

the design space, and the case of misclassification 
errors has been studied by Pregibon (1982) and Copas  

(1988). Croux, et al. (2002) found that 

the preeminent risky special cases , 

named terrible use points , are 

misclassified observations which are at the same 

time distant in the design space of x variables. (Ahmad 
& et al, 2010, 503) 

 

7. ROBUST LOGISTIC REGRESSION MODEL: 
Let Yi be perceptions from a Bernoulli distribution, 

Bernoulli(pi); that are assumed to be created from the 
generalized linear model with vector 

of illustrative variables  xT = (1, x1, ….. , xp), parameter 

vector βT = (β0, β1, …… βp) and a function G such that 
pi = P(Yi = 1|Xi = xi) = G(xT

i β);  i = 1,2,…., n. In the 

logistic regression case G(z) = ez=(1 + ez). The 
conditional probability density function (p.d.f.) of Y 

given x is: 
𝑔(𝑦/𝑋 = 𝑥) = G(𝑥𝑇 β)𝛿(𝑦 − 1) + (1 − G(𝑥𝑇 β))𝛿(𝑦)                                                                  
(7) 
Where 𝛿(𝑎) is Dirac's measure? 
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Let  𝑌𝑖 be observations from the replacement model 

where it is assumed that Yi is contaminated by another 
random variable Wi ∼ Bernoulli (qi). Thus, 

�̂�𝑖 = (1 − ℰ𝑖,𝑛)𝑌𝑖 + ℰ𝑖,𝑛𝑊𝑖                                                                                                                

(8) 
Where the random variable   ℰ𝑖,𝑛∼ Bernoulli (v/√n);  v ≤   

0 and n is the sample size. The rate of contamination, 
P(ℰ𝑖,𝑛 = 1) = v/√n, is justified by contiguity of 

contaminated alternatives indexed by the parameter v 

< 0 with respect to the ideal model (v = 0). 

For samples (Y1,…., Yn) and (W1,…...,Wn) of (iid) random 
variables the conditional pdf of Wi given x by the form:  
𝑓(𝑦/𝑥) = F(x)𝛿(𝑦 − 1) + (1 − F(x))𝛿(𝑦)                                                                                     
(9) 

Where F(x) = P(= Wi = 1/Xi = xi) = qi, Therefore Ŷi 

are observations from Bernoulli distribution (p̂i), where 

p̂i = pi + v/√n(qi − pi)  ( G.D. Mishra, & et. al., 2001, 

3-4). 

 
8. ROBUST ESTIMATORS IN LOGISTIC 

REGRESSION MODEL: 
An exception is an perception that goes astray from the 

other perception values and leads to blunders within 

the  logistic regression model. The deviation 
can happen in reaction factors as well as 

in informative factors or both. In the binary regression 
model,  all reaction factors Y_i are parallel, taking 

numerical values  0 or 1, therefore, the deviation within 
the reaction variable can as it were happen as a  0 → 1 

or 1 → 0 .( Ahmed,, 2020, 130) 

 
8.1 Mallows Type Class (Mallows) 

The principle of this estimator receives the 
minimization of the weighted logarithm-

likelihood function, where the weights depend on 

the illustrative variables. In this 
way lessening the exception value that does 

not compare to the other perceptions (Ahmed , Idriss 
Abdelmajid, Cheng , Weihu , 2020 , 10 ). 

ℎ𝑛(𝑥) = [(𝑥 − �̂�𝑛)′�̂�−1(𝑥 − �̂�𝑛)]
1

2                                                                                                  

(10) 
Where,  μ̂n   Robust location estimator,  Σ−1   Robust 

variance-covariance matrix of the continuous covariates 
(x1, … . . , xn) which can be calculated by using minimum 

covariance determinant (MCD) approach. 

Then the Mallows type estimator for logistic regression 
can be obtained by a solution of the form of: 
σ Wi[yi

𝑛
𝑖=1 log(∏ (𝛽𝑛

𝑖=1 ) ) + (1 − yi) log(1 − ∏ (𝛽𝑛
𝑖=1 ) )]                                                             

(11) 

where Wi = W(hn(xi)), W is a non-increasing function 

such that W (u) is bounded.  
Bergesio, A. and Yohai, V.J. (2011) suggested choosing 

W depends on a constant c > 0 . 

𝑊(𝑢) = ቀ1 −
𝑢2

𝑐2
ቁ

3

 𝐼(⃒𝑢⃒ ≤ 𝑐)                                                                                                     

(12) 

This estimate is called Mallows-type estimator estimate 
and the influence function of WMLE is given by: ( Idriss 

& Cheng, 2020,132). 

𝐼𝑓(𝑦, 𝑥, 𝛽) = 𝑀−1(𝑦 − 𝑓(𝛽′𝑥))𝑥𝑊(ℎ(𝑥))                                                                                    

(13) 

Where, ℎ(𝑥) = [(𝑥 − μ)′𝛴−1(𝑥 − �̂�𝑛)]
1

2  with 𝜇  and 𝜮 are 

the limit values of 𝜇 and �̂�  , 

𝑀 = 𝐸(𝑊(𝑋))𝐹−1(𝛽𝑥)𝑥′𝑥                                                                                                             

(14) 

8.2 Weighted Maximum Likelihood Estimates 

(WMLE)   
The (WMLE) method is one of the robust estimation 

methods proposed by (Carroll & Pederson, 1993), as it 
is used to estimate the parameters of the logistic 

regression model in the event that there are outlier's 

values in the data (Carroll, & Pederson, 1993). 
The goal of the (WMLE) method is to find a set of values 

estimated to β, based on modifying the method of the 
maximum Likelihood method (ML) to obtaining a more 

efficient robust estimator by giving the observations 
weights to reduce the impact of outliers observations. 

Assuming that we have n random variables (y1 , y2, …., 

yn), then this method depends on the probability density 
function of random variables, which follows the 

Bernoulli distribution, which is according to the 
following formula: (Maronna & et al, 2006) 

𝑃(𝑌𝑖 = 𝑦𝑖) = 𝑝𝑖
𝑦𝑖  (1 − 𝑝𝑖)

1−𝑦𝑖                                                                                                       

(15) 
Then, the maximum likelihood function of the logistic 

regression model is as follows: 
L(β, X) = ∏ pi

yi(1 − pi)
1−yin

i=1 

(16)   L(β, X) = ∏ (1 − pi)∏ ቀ
pi

1−pi
ቁ

yin
i

n
i=1 

L(β, X) = ∏ (1 − pi)exp [σ yilog (
pi

1−pi
)]n

i=1
n
i                   

According to the logistic transfer feature, then, 

log
pi

1 − pi

= x´i β 

L(β, X) = ∏ (1 − pi)exp [∑ yi(x´i β)]
n

i=1

n

i
 

By taking the logarithm of both sides of the over 

equation (16), we get the following formula: 

While: 

(1 − pi) =  
1

1+e
x´i β

                                                                   

logL(β, X) = [σ yi(x´i β)]n
i=1 + σ logn

i=1 (
1

1+e
x´i β

)                               

logL(β, X) = [σ yi(x´i β)]n
i=1 − σ log (n

i=1 1 + ex´i β)                                                                      

(17)   
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And by equating the first derivative to the logarithm of 

maximum likelihood function of zero, then solving a set 

of equations resulting from the derivative: 
∂logL(β, X)

∂β
= 0 

And that the estimation in equation (17) requires 

following the method adopted by the (WMLE) method, 

which is to reduce the amount as follows: (Dhymeaa, 
2017, 20). 
min σ WiLi(β)  m

j=1                                                           

                                                                  (18) 
Li(β) = logL(β, X)    
Where: 
𝐿𝑖(𝛽) is the logarithm of the function in the equation 

from equation (17) 
𝑊𝑖 Weight function 

For obtaining (WMLE) estimators, the weighted least 

squares method or one of the numerical methods is 
used as follows: 

 

β̂ = (X´WX)¯1X´WZ                                                                                                              

(18)                                                      

The formula (18) gives the best unbiased linear 
estimation of the parameter vector.as 

Z =

[
 
 
 
 
 
 
 Ln 

p1

1 − p1

 

Ln 
p2

1 − p2

⋮
⋮

Ln 
pn

1 − pn ]
 
 
 
 
 
 
 

 

Where: 

X the matrix of explanatory variables with a degree 

(m*k) 
W a diagonal matrix whose main diameter elements are 
the weight function  Wi  which is represent the robust of 

the estimator resulting from this method depends on 
the weight function  Wi, and this function has many 

forms, as the formula proposed by (Meuller and Neykov, 

2003) was used using three functions of weights, 
namely: (Muller, and Neykov, 2003) 
 W1(t) = (at + b),                        

 W2(t) = (at2 + b),                      

 W3(t) = (a(1 − (t − 1)6) + b),
 

   }                                                                                      

(19) 

a b  are constants are as follows: 
a=0.8 ,  b=0.2  

t is a function that can be found according to the 
following formula : 

t = h(X) = [ (X − μ̂)´ σ̂¯1(X − μ̂)]½                                                                                      
(20) 

X = [Xi1 , Xi2, …… , Xik]
´ 

By repeating equation (20) for  m  times, we get ti as 
follows: 

ti = h(xi) = [ (xi − μ̂)´ σ̂¯1(xi − μ̂)]½   ;    i = 1,2, … … . , n                                                 
(21) 

μ̂ Ordinary estimates of the mean vector of k*1 

σ̂  Ordinary Estimates of the Covariance Matrix of k*k 

The use of this method is to improve the classical 
method of the (MLE) to a robust method, by following 

the following steps: 

1. Calculate (�̂�) and σ̂ with the following formulas: 

�̂� =
1

n
σ 𝑥𝑖

n
𝑖=1                                                                                                                             

(22) 

σ̂ =
1

n
σ [( 𝑥𝑖 − �̂�)(𝑥𝑖 − �̂�)´ n

𝑖=1                                                                                                 

(23) 

2. The estimates in the two equations (22) (23) are used 

in calculating the formula in equation (21).  

3. Re-calculating both the mean and the variance matrix 

where   (�̂�) and σ̂  are replaced using estimated 

weights. These weights depend on the values of ti and 

are as follows: 

�̂�   ∗ =
σ 𝑤0𝑖𝑥𝑖      

n
𝑖=1

σ 𝑤0𝑖      
n
𝑖=1

                                                                                                                         

(24) 

σ̂∗ =
σ 𝑤0𝑖

2[(𝑥𝑖−�̂� ∗)(𝑥𝑖−�̂� ∗ )´    n
𝑖=1

σ 𝑤0𝑖
2n

𝑖=1

                                                                                                       

(25) 

�̂� ∗ is robust location vector with degree k*1 

σ̂∗ is robust measured matrix with degree k*k 

 𝑤0𝑖 Weight function 

The weight function 〖 𝑤0𝑖  has several formulas, and 

one of these formulas has been used, which is the 
Huber function formula), where the resulting estimator 

is characterized by being an efficient estimator and less 

sensitive to anomalies, as follows: 

 𝑤0𝑖 = min{1,
𝑔

|𝑡𝑖|
}                                                                                                                      

(26) 

Where g=1.37 
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 𝑤0𝑖  is used in the two equations (24) (25) and then the 

substitution in equation (19) 

The above steps represent the first iteration of the 

method, and then step (3) is recalculated iteratively, 
depending on the results of the previous iteration. The 

iterative process is stopped when the difference 

between the results of two successive iterations (when 
the difference between successive estimates (past and 

previous)) in estimating the parameters becomes little 

at a certain level of accuracy, it is 5e (-5) or 5×10(-5). 
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