1,2,3-TRIAZOLIUM SALTS DERIVATIVES AS ANTICANCER REAGENTS
Keywords:
Synthesis, 1,2,3-Triazolium Salts, Triazole Ring, AnticancerAbstract
A group of organic compounds known as 1,2,3-triazolium salts include the triazolium cation, a five-membered ring made up of three nitrogen and two carbon atoms. Due to their wide spectrum of characteristics and prospective uses in chemistry, materials science, and medicine, these compounds have attracted a lot of attention in recent years. The triazolium ring's substituents can be changed to create derivatives of 1,2,3-triazolium salts. The type and location of these substituents have a significant impact on the compound's characteristics and reactivity. Some 1,2,3-triazolium salt compounds have demonstrated strong biological activity, including antibacterial, antifungal, and anticancer activities. This makes them potential candidates for the development of new drugs and therapies. 1,2,3-Triazolium salts derivatives have shown potential as anticancer reagents due to their ability to selectively target cancer cells and inhibit their growth. These derivatives exhibit cytotoxicity towards cancer cells while demonstrating minimal toxicity towards normal healthy cells. This review provides a comprehensive overview of synthetic strategies for the preparation of 1,2,3-triazolium salts and highlights the structures of various derivatives that exhibit biological activities (anti-cancer). It is important to note that the development of 1,2,3-triazolium salts derivatives as anticancer reagents is an active area of research, and specific compounds and mechanisms may vary. Further studies are required to optimize their efficacy, selectivity, and safety profiles before their clinical application
References
Xie, M.; Tang, H.; Zhang, Y.; Guo, Z.; Guo, H.; Qu, G. A new method for the synthesis of alkyl-substituted 1,2,3-triazole compounds. Chin. J. Org. Chem. 2015, 35, 2589–2594.
Weiss, Z.F.; Little, J.; Hammond, S. Evolution of antifungals for invasive mold infections in immunocompromised hosts, then and now. Expert Rev. Anti-Infect. Ther. 2023, 21, 535–549.
Aizpurua, J.M.; Fratila, R.M.; Monasterio, Z.; Pérez-Esnaola, N.; Andreieff, E.; Irastorzaa, A.; Sagartzazu-Aizpuruaa, M. Triazolium cations: From the “click” pool to multipurpose applications. New J. Chem. 2014, 38, 474–480.
Yacob, Z.; Liebscher, J. 1,2,3-Triazolium salts as a versatile new class of ionic liquids. In Ionic Liquids; Handy, S.T., Ed.; IntechOpen: Rijeka, Germany, 2011; Volume 1, pp. 3–23.
Li, Q.; Qiu, L.; Tan, W.; Gu, G.; Guo, Z. Novel 1,2,3-triazolium-functionalized inulin derivatives: Synthesis, free radical-scavenging activity, and antifungal activity. RSC Adv. 2017, 7, 42225–42232.
Tan, W.; Li, Q.; Dong, F.; Qiu, S.; Zhang, J.; Guo, Z. Novel 1,2,3-triazolium-functionalized starch derivatives: Synthesis, characterization, and evaluation of antifungal property. Carbohydr. Polym. 2017, 160, 163–171.
Tan, W.; Li, Q.; Gao, Z.; Qiu, S.; Dong, F.; Guo, Z. Design, synthesis of novel starch derivative bearing 1,2,3-triazolium and pyridinium and evaluation of its antifungal activity. Carbohydr. Polym. 2017, 157, 236–243.
Tan, W.; Zhang, J.; Luan, F.; Wei, L.; Li, Q.; Dong, F.; Guo, Z. Synthesis, characterization, and antifungal evaluation of novel 1,2,3-triazolium-functionalized starch derivative. Int. J. Biol. Macromol. 2017, 101, 845–851.
Tan, W.; Li, Q.; Dong, F.; Zhang, J.; Luan, F.; Wei, L.; Chen, Y.; Guo, Z. Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property. Carbohydr. Polym. 2018, 182, 180–187.
Steiner, I.; Stojanovic, N.; Bolje, A.; Brozovic, A.; Polancec, D.; Ambriovic-Ristov, A.; Stojkovic, M.R.; Piantanida, I.; Eljuga, D.; Kosmrlj, J.; et al. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol. Oncol. 2016, 50, 280–288.
Rokitskaya, T.I.; Khailova, L.S.; Makarenkov, A.V.; Shunaev, A.V.; Tatarskiy, V.V.; Shtil, A.A.; Ol’shevskaya, V.A.; Antonenko, Y.N. Carborane derivatives of 1,2,3-triazole depolarize mitochondria by transferring protons through the lipid part of membranes. Biochim. Biophys. Acta Biomembr. 2019, 1861, 573–583.
Almeida, A.C.; Meinel, R.S.; Leal, Y.L.; Silva, T.P.; Glanzmann, N.; Mendonca, D.V.C.; Perin, L.; Cunha-Júnior, E.F.; Coelho, E.A.F.; Melo, R.C.N.; et al. Functionalized 1,2,3-triazolium salts as potential agents against visceral leishmaniasis. Parasitol. Res. 2022, 121, 1389–1406.
Fletcher, J.T.; Sobczyk, J.M.; Gwazdacz, S.C.; Blanck, A.J. Antimicrobial 1,3,4-trisubstituted-1,2,3-triazolium salts. Bioorg. Med. Chem. Lett. 2018, 28, 3320–3323.
Godard, J.; Gibbons, D.; Leroy-Lhez, S.; Williams, R.M.; Villandier, N.; Ouk, T.S.; Brégier, F.; Sol, V. Development of phenalenonetriazolium salt derivatives for aPDT: Synthesis and antibacterial screening. Antibiotics 2021, 10, 626.
Subedi, Y.P.; Alfindee, M.N.; Shrestha, J.P.; Chang, C.T. Tuning the biological activity of cationic anthraquinone analogues specifically toward Staphylococcus aureus. Eur. J. Med. Chem. 2018, 157, 683–690. [CrossRef]
Subedi, Y.P.; Chang, C.T. Cationic anthraquinone analogs as selective antimicrobials. Microbiol. Insights 2019, 12, 1178636119847809.
Shyam, R.; Forestier, C.; Charbonnel, N.; Roy, O.; Taillefumier, C.; Faure, S. Solution-phase synthesis of backbone-constrained cationic peptoid hexamers with antibacterial and anti-biofilm activities. Eur. J. Org. Chem. 2021, 2021, 5813–5822. [CrossRef]
Yoshimura, Y.; Tomimatsu, K.; Nishimura, T.; Miyake, A.; Hashimoto, N. Studies on condensed-heterocyclic azolium cephalosporins. V. Synthesis and antibacterial activity of 3-(condensed-triazolo-pyridinium, -pyrimidinium, and -pyridazinium)- methyl cephalosporins. J. Antibiot. 1992, 45, 721–734.
Wilson, J.A.; Lin, Z.J.; Rodriguez, I.; Ta, T.; Martz, L.; Fico, D.; Johnson, S.S.; Gorden, J.D.; Shelton, K.L.; King, L.B. Synthesis, characterization, and antimicrobial activity of lipophilic N,N’-bis-substituted triazolium salts. J. Heterocycl. Chem. 2021, 59, 577–587.
Peiteado, Z.M. Synthesis, Applications and Reactivity of 1,2,3-Triazolium Salts. Ph.D. Thesis, University of the Basque CountryUPV/EHU, Bilbao, Spain, 2015.
Yacob, Z.; Liebscher, J. Chemistry of 1,2,3-triazolium salts. In Chemistry of 1,2,3-Triazoles; Dehaen, W., Bakulev, V.A., Eds.; Springer International Publishing: Cham, Germany, 2015; Volume 40, pp. 167–210.
Huang, D.; Zhao, P.; Astruc, D. Catalysis by 1,2,3-triazole- and related transition-metal complexes. Coord. Chem. Rev. 2014, 272, 145–165.
Mishra, R.; Mishra, J.S.; Chaubey, S.A. Recent advances on ttriazolium iionic liquids: Synthesis and applications. Curr. Org. Chem. 2019, 23, 1239–1255.
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
Maity, R.; Sarkar, B. Chemistry of compounds based on 1,2,3-triazolylidene-type mesoionic carbenes. J. Am. Chem. Soc. 2022, 2, 22–57
Monasterio, Z.; Irastorza, A.; Miranda, J.I.; Aizpurua, J.M. Site-selective N-dealkylation of 1,2,3-triazolium salts: A metal-free route to 1,5-substituted 1,2,3-triazoles and related bistriazoles. Org. Lett. 2016, 18, 2511–2514.
Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. 1963, 2, 565–598.
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 14.
Purnell, L.G.; Shepherd, J.C.; Hodgson, D.J. Interaction of metal ions with 8-azapurines. synthesis and structure of tetrachlorobis-2[(5-amino-4-carboxamidinium)[l,2,3]triazole]copper(II) monohydrate. J. Am. Chem. Soc. 1974, 97, 9–13. [CrossRef] Int. J. Mol. Sci. 2023, 24, 10694 19 of 19
Ma, J.; Ding, S. Transition metal-catalyzed cycloaddition of azides with internal alkynes. Asian J. Org. Chem. 2020, 9, 1872–1888.
Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism. J. Am. Chem. Soc. 2008, 130, 8923–8930.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10-29.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74.
Duffy MJ. The war on cancer: are we winning? Tumour Biol 2013; 34: 1275-84.
Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today 2003; 8: 1128-37.
Košmrlj J. Click Triazoles, 1 edn, vol. 28. Berlin Heidelberg: Springer-Verlag; 2012.
Aizpurua JM, Fratila RM, Monasterio Z, Perez-Esnaola N, Andreieff E, Irastorza A, et al. Triazolium cations: from the “click” pool to multipurpose applications. New J Chem 2014; 38: 474-80.
Massarotti A, Aprile S, Mercalli V, Del Grosso E, Grosa G, Sorba G, et al. Are 1,4-and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups? Chem Med Chem 2014; 9: 2497-508.
da Silva EN, Jr., Cavalcanti BC, Guimaraes TT, Pinto Mdo C, Cabral IO, Pessoa C, et al. Synthesis and evaluation of quinonoid compounds against tumor cell lines. Eur J Med Chem 2011; 46: 399-410.
Ahmed N, Konduru NK, Ahmad S, Owais M. Design, synthesis and antiproliferative activity of functionalized flavone-triazole-tetrahydropyran conjugates against human cancer cell lines. Eur J Med Chem 2014; 82: 552-64.
Souza-Fagundes, E.M.; Delp, J.; Prazeres, P.D.M.; Marques, L.B.; Carmo, A.M.L.; Stroppa, P.H.F.; Glanzmann, N.; Kisitu, J.; Szamosvari, D.; Böttcher, T.; et al. Correlation of structural features of novel 1,2,3-triazoles with their neurotoxic and tumoricidal properties. Chem. Biol. Interact. 2018, 291, 253–263.
Ramos, J.P.; Abdel-Salam, M.A.L.; Nobre, D.A.B.; Glanzmann, N.; de Souza, C.P.; Leite, E.A.; de Abreu Teles, P.P.; Barbosa, A.S.; Barcelos, L.S.; Dos Reis, D.C.; et al. Acute toxicity and antitumor potential of 1,3,4-trisubstituted-1,2,3-triazole dhmtAc-loaded liposomes on a triple-negative breast cancer model. Arch. Pharm. 2022, 355, e2200004.
Shrestha, J.P.; Chang, C.W. Safe and easy route for the synthesis of 1,3-dimethyl-1,2,3-triazolium salt and investigation of its anticancer activities. Bioorg. Med. Chem. Lett. 2013, 23, 5909–5911.
Shrestha, J.P.; Subedi, Y.P.; Chen, L.; Chang, C.W.T. A mode of action study of cationic anthraquinone analogs: A new class of highly potent anticancer agents. MedChemComm 2015, 6, 2012–2022.
Wang, R.; Li, Y.; Dehaen, W. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur. J. Med. Chem. 2020, 207, 112737.
Riela, S.; Massaro, M.; Colletti, C.G.; Bommarito, A.; Giordano, C.; Milioto, S.; Noto, R.; Poma, P.; Lazzara, G. Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int. J. Pharm. 2014, 475, 613–623.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.