PREDICTING HIV PREVALENCE AMONG PEOPLE AGED 15-49 YEARS FOR ANGOLA USING BROWN’S DOUBLE EXPONENTIAL SMOOTHING TECHNIQUE
Keywords:
Exponential smoothing, ForecastingReferences
UNAIDS (2015). Understanding Fast-Track - Accelerating action to end AIDS epidemic by 2030.
https://www.unaids.org/sites/default/files/media_asset/201506_JC2743_Understanding_FastTrack_en.pdf.
UNAIDS (2019). Global Aids Update 2019.
Erol Orel., Rachel Esra., Janne Estill., Stéphane Marchand-Maillet., Aziza Merzouki., and Olivia Keiser (2020).
Machine learning to identify socio-behavioural predictors of HIV positivity in East and Southern Africa, medRxiv
preprint, https://doi.org/10.1101/2020.01.27.20018242doi:
Kendall et al (2016). Population Size, HIV, and Behavior Among MSM in Luanda, Angola: Challenges and
Findings in the First Ever HIV and Syphilis Biological and Behavioral Survey, J Acquir Immune Defic Syndr. 2014
August 15; 66(5): 544–551. doi:10.1097/QAI.0000000000000213.
Angola (2016). Countdown To Zero Elimination of New HIV Infections Among Children by 2015 And Keeping
Their Mothers Alive, pp. 1-4.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.